

Design Document | Final-v05

Broadband-Hamnet Microwave Communication System

Submitted to:

Professor Brian Thompson

Senior Design Project II

Temple University

College of Engineering

1947 North 12th Street

Philadelphia, Pennsylvania 19122

4/16/2016

Prepared by:

Robert Irwin; Tyler Olivieri; Devin Trejo

Faculty Advisor(s): Professor Dennis Silage

Industrial Advisor(s): N/a

TOI Group

Temple University

College of Engineering

1947 North 12th Street

Philadelphia, Pennsylvania 19122

For further information, please contact team lead Devin Trejo (email: devin.trejo@temple.edu)

COLLEGE OF ENGINEERING

This page is intentionally blank.

Team SD-27

Team Members Robert Irwin; Tyler Olivieri; Devin Trejo

Advisor(s) Professor Dennis Silage

Coordinator Professor Brian Thomson

Department(s) Electrical and Computer Engineering

Project Title Broadband-Hamnet Microwave Communication System

Abstract Our Broadband-Hamnet Microwave Communication System (BHMCS) is an inexpensive

alternative to traditional HAM radio equipment that is still reliable to use in emergency

situations. We will use readily available Linksys WRT54G routers to setup a long distance

communication network that is self-configuring allowing users to easily find one another. In

the process of creating a self-configuring network we create a new network protocol termed

remote machine discovery protocol (RMDP). At the heart of the project is a Raspberry Pi 2

processor, which will handle all half-duplex/full duplex communications. Knowledge of data

communication and transmission, statistical bit error correction, antenna design, and network

programing are required to complete project. We hope our project will successfully supplement

the Amateur Radio community’s radio network in the Philadelphia Area.

URL https://sites.google.com/a/temple.edu/broadband-mcomm/

https://sites.google.com/a/temple.edu/broadband-mcomm/

EXECUTIVE SUMMARY

Broadband-Hamnet Microwave Communication System aims to provide long-distance emergency

communications using low-power, portable, and inexpensive equipment. In an environment where cell

reception and internet access becomes unavailable, it is important to maintain a means of communication

to an area outside the area in distress. This project will also be useful in places where there is a lack of an

Internet Service Provider (ISP). These countries can use this project to communicate wirelessly within their

borders, as well as internationally. This project aims to be a low-cost, and reliable solution to this issue.

In order for this project to be successful, the hardware needs to be readily available and inexpensive, and

the software must be user-friendly. In an environment where power may become unavailable, the equipment

must consume a small amount of power, provided from an external battery or backup generator. The system

must also automatically and dynamically re-configure itself due to the possibility of pre-existing nodes

becoming unavailable in emergency situations and new nodes becoming available. The communication

protocol implemented in the design must also have sequencing, error detection/correction, and automatic

repeat request functionality.

For the reasons described above, the system will consist of a Raspberry Pi model 2, and a Linksys WRT54G

wireless router. The routers will be programmed, (flashed) with a custom firmware known as Broadband

Hamnet. The Broadband Hamnet firmware takes care of configuring the mesh network, which includes an

optimized link state routing (OLSR) protocol, digi-peating, and discovering new nodes (new routers that

come one the air). The firmware does not account for devices connected to LAN network of the nodes.

Because of this, communication cannot be made between two users of the network. Therefore, it is

necessary to design an application that automatically finds the IPv4 addresses of remote machines

connected to the mesh network. The routers run a bare-bones Linux operating system, allowing the use of

existing tools such as the address resolution protocol (ARP) and networking utility netcat as the basis for

the new remote machine discovery protocol (RMDP). In order to ensure that there is not a single point-of-

failure in the mesh network, each Raspberry Pi will act as a server and client. It allows every single machine

on the network to know how to contact any other machine on the network. The machines will communicate

using Transmission Control Protocol/Internet Protocol (TCP/IP) as the underlying protocol. It is necessary

to design an application protocol so that each machine can process and reply to different types of messages.

The different types of messages include new node discovery, network information requests, peer-to-peer

communication requests and priority messages. The application protocol will be developed using Google’s

protocol buffer (Protobuf) encoder. To increase maximum distance between nodes, a Yagi antenna will be

connected to the Linksys WRT54G through a coaxial cable. A Yagi antenna is a unidirectional antenna that

redirects most of the signal energy in one direction. This concept increases transmission distance without

any additional power requirements.

This project is very likely to be completed in its entirety within the allotted time period. The success of the

Broadband Hamnet Microwave Communication System relies heavily on the community because multiple

nodes are required for a successful mesh network. If successful, this project could supplement emergency

communications in the Philadelphia area. Because the project is open source, only the initial investment of

under $100 is required to set up a node in the mesh. In order for the mesh to be effective, the network needs

to span a large area. Covering a large geographical area is possible, especially because a Raspberry Pi 2 is

not needed at every mesh node. The Linksys WRT54G flashed with the Broadband Hamnet firmware can

act as a repeater station, which simply forwards messages for other nodes. Because the Linksys WRT54G

is only around $40, nodes can be installed to cover a large geographical area, without the help of large

power amplifiers and antennas. The Broadband Hamnet Microwave Communication System also has the

ability to provide underprivileged areas with an inexpensive way to communicate with family and friends

because the equipment is so inexpensive and accessible.

Table of Contents
1. PROBLEM STATEMENT ... 4

1.1. Overall Objectives ... 4

1.2. Historical and Economic Perspective ... 4

1.3. Design Concept .. 4

1.3.1. Hardware ... 4

1.3.2. Software .. 5

1.4. Major Design and Implementation Challenges .. 5

1.4.1. Hardware ... 5

1.4.2. Software .. 6

1.5. Implications of Project Success .. 6

2. DESIGN REQUIREMENTS .. 6

2.1.1. Hardware ... 6

2.1.2. Software .. 6

3. APPROACH ... 7

3.1. Hardware Design ... 7

3.1.1. Long Length Coaxial Cable Performance ... 9

3.1.2. Power Amplification ... 10

3.1.3. Path loss .. 12

3.1.4. Link Budget .. 12

3.1.5. Powering the Amplifier ... 13

3.1.6. Theory of Yagi-Uda Antenna Design .. 15

3.2. Software Design ... 16

3.2.1. Theory of TCP/IP Networking Stack .. 16

3.2.2. Theory of Socket Programming .. 20

3.2.3. Creating the Remote Machine Discovery Protocol (RMDP) ... 24

3.2.4. TOIChat – Backend Development .. 26

3.2.5. TOIChat - Front-End Development ... 30

4. EVALUATION .. 37

4.1. Test Methods.. 37

4.1.1. Simulation ... 37

4.1.2. Hardware ... 38

4.1.3. Software .. 39

4.2. Results ... 40

4.2.1. Simulation ... 40

4.2.2. Hardware ... 43

4.2.3. Software .. 45

5. SUMMARY AND FUTURE WORK ... 50

6. ACKNOWLEDGEMENTS .. 51

7. References... 51

APPENDIX A – Project Site and GitHub Source Code .. 53

APPENDIX B – Project Contact... 53

 Broadband-Hamnet Microwave Communication System Page 1 of 53

Senior Design Project II | Final-v05 4/16/2016

Table of Figures
Figure 3.1.1: Solution 1 -- Router and Raspberry Pi on 7th Floor ... 8
Figure 3.1.2: Solution 2 -- Router and Raspberry Pi on Roof ... 8
Figure 3.1.3: Solution 3 -- Router on Roof and Pi on 7th Floor .. 8
Figure 3.1.4: Attenuation of 2.4 GHz signal of Coaxial Cable .. 10
Figure 3.1.5: 2.4 GHz Power Amplifier A .. 10
Figure 3.1.6: Power Amplifier 2 Specs ... 11
Figure 3.1.7: 2.4 GHz Power Amplifier B .. 11
Figure 3.1.8: Power Amplifier 2 Transmission Power .. 11
Figure 3.1.9: GPS coordinates of sending point .. 12
Figure 3.1.10: GPS coordinates of receiving point ... 12
Figure 3.1.11: Distance between two GPS coordinates ... 12
Figure 3.1.12: Communication Performance with Proposed Broadband Hamnet Equipment 13
Figure 3.1.13: Schematic to power the amplifier from the 7th floor ... 14
Figure 3.1.14: Simulating Power and RF down coaxial cable .. 15
Figure 3.2.1: TCP Header (Stallings, 2014, p. 42) .. 17
Figure 3.2.2: IPv4 Header (Stallings, 2014, p. 43) .. 17
Figure 3.2.3: Data Packet from Wireshark .. 17
Figure 3.2.4: TCP Protocol Flags .. 19
Figure 3.2.5: rec_TCP.py (v00) .. 21
Figure 3.2.6: send_TCP.py (v00) .. 21
Figure 3.2.7: Half Duplex One Message Send -- Waiting ... 22
Figure 3.2.8: Half Duplex One Message Send – Terminated .. 22
Figure 3.2.9: send_TCP.py (v01) .. 23
Figure 3.2.10: Full Duplex One Message Send – Terminated ... 23
Figure 3.2.11: Full Duplex Communication.. 24
Figure 3.2.12 Remote Machine Discovery Protocol (RMDP) ... 25
Figure 3.2.13: Internet Control Message Protocol (ICMP) Ping Packets .. 26
Figure 3.2.14: toiChatNameServer - UML Sketch .. 27
Figure 3.2.15: Google Protobuf Compared against other Popular Encoders (Epaminondas, 2016) 27
Figure 3.2.16: Server Multithreaded Client Handling ... 28
Figure 3.2.17: toiChatServer and toiChatter - UML Sketch .. 29
Figure 3.2.18: toiChatClient - UML Sketch .. 29
Figure 3.2.19: toiChatShell - Startup .. 30
Figure 3.2.20: toiChatShell – Connection to TOIChat Network and Chat Messaging 31
Figure 3.2.21: toiChatShell – Chat Environment .. 31
Figure 3.2.22. GUI login screen .. 32
Figure 3.2.23: Login screen error message ... 33
Figure 3.2.24: Choose chatter screen .. 33
Figure 3.2.25: Gui chat window .. 34
Figure 3.2.26: Sending message.. 34
Figure 3.2.27: Multiple chat windows open simultaneously ... 35
Figure 3.2.28: ToiChat high level software arc0hetecture ... 36
Figure 3.2.29: Methods in ToiChatGui and ChatWindow Class ... 36
Figure 4.1.1: Com Setup inside Faraday Cage .. 38
Figure 4.1.2: Broadband-Hamnet Web Portal ... 39
Figure 4.1.3: GitHub Issue Tracker ... 40
Figure 4.2.1: Performance Test Station 1 .. 41
Figure 4.2.2: Performance Test Station 2 .. 41
Figure 4.2.3: Effective Data Rate vs Simulated Distance.. 42

https://d.docs.live.net/1ba75611f0c4f0d1/Documents/School/Senior%20Design/SD1_designdoc.docx#_Toc448622127
https://d.docs.live.net/1ba75611f0c4f0d1/Documents/School/Senior%20Design/SD1_designdoc.docx#_Toc448622166

 Broadband-Hamnet Microwave Communication System Page 2 of 53

Senior Design Project II | Final-v05 4/16/2016

Figure 4.2.4: SNR vs Simulated Distance ... 42
Figure 4.2.5: Speed Test, Cage Open .. 43
Figure 4.2.6: Speed Test, Cage Closed ... 43
Figure 4.2.7: Transmission Frequency .. 43
Figure 4.2.8: IEEE 802.11 2.4GHz channel spacing ... 44
Figure 4.2.9: Broadband-Hamnet Web Portal – Configuration Settings ... 44
Figure 4.2.10: Power of WRT54G (Frequency Range: 2.22GHz→2.62Ghz) ... 45
Figure 4.2.11: TOIChat.log - TOIChatShell.py Startup .. 46
Figure 4.2.12: TOIChat.log – New Client Connect ... 47
Figure 4.2.13: TOIChat.log – Database Synchronization .. 48
Figure 4.2.14: TOIChat.log – Chat Messages ... 49
Figure 4.2.15: TOIChat.log – Failed Ping and Node Removal.. 50

 Broadband-Hamnet Microwave Communication System Page 3 of 53

Senior Design Project II | Final-v05 4/16/2016

Table of Tables
Table 1.3.1 Proposed Hardware Solution Comparison ... 5
Table 1.3.2 Comparison of Viable Transport Layer Communication Protocols .. 5
Table 3.2.1: TCP Header .. 18
Table 4.1.1: Required Power to Simulate Long Distance Communication ... 37

 Broadband-Hamnet Microwave Communication System Page 4 of 53

Senior Design Project II | Final-v05 4/16/2016

1. PROBLEM STATEMENT

1.1. Overall Objectives

This project aims to establish an ad-hoc mesh network over amateur radio frequencies, namely the 13 cm

band. The communication link will be using a router firmware called Broadband-Hamnet, which is designed

to run on the Linksys WRT54G-series routers. The firmware sets the framework of a mesh network.

However, the firmware does not allow for peer-to-peer communications. Therefore, our project aims to

design, on top of Broadband-Hamnet, an application that handles peer-to-peer communication, without

relying on the Internet.

1.2. Historical and Economic Perspective

In the event of a disaster, conventional communication systems can be destroyed. Examples of such

occurrences include but are not limited to tsunamis, hurricanes, and earthquakes. In these situations,

Amateur Radio operators can provide communications to the affected areas for disaster support. Amateur

Radio has been applicable and useful for emergency communications since radios were easily obtainable

for the average citizen. These technologies were once limited to the 200 m band. As technology increased

higher frequency operation and faster data communication became available.

For amateur radio operators to be effective in providing assistance to disaster areas, they need to be able to

become mobile and travel to the disaster area. Many amateur radio operators set up mobile communication

nodes in their vehicles (HRS, 2016). These vehicles can travel to the affected areas easily to provide the

communications essential for successful disaster relief. However, the equipment to make said

communication nodes can become expensive easily because an omnidirectional antenna is often mounted

on top of the vehicle. In addition to the antenna, the operator would also need a transceiver and a

microphone of some sort. The usage of the antennas also require the operator to have an appropriate license.

Typically, a broadcast message is used to attempt to communicate to anyone listening.

Newer amateur radio nodes can be made with COTS (consumer off the shelf) equipment. Firmwares such

as Broadband-Hamnet allow the amateur radio operator to flash a router and give the user more

configuration control over a network (HRS, 2016). Broadband-Hamnet in particular sets up mesh network

in which users can communicate over with the added benefit of high speeds. This allows communications

to travel longer distances by travelling through several nodes. Another added benefit is the routers to flash

are usually inexpensive and the firmware is open source so it is free.

1.3. Design Concept

1.3.1. Hardware

The main hardware challenge is getting the signal from the receiver located on the roof of Temple’s

Engineering building to a computer located on the seventh floor of the Engineering Building, which is about

200 feet away. Possible solutions include placing the Raspberry Pi right next to the antenna on the roof,

and using Temple University’s wireless network to “ssh” into the RPi from a different location. The benefit

of this approach is a dramatic reduction in the amount of signal attenuation from the router to the antenna,

however, the approach leaves the Raspberry Pi and router exposed to severe weather.

Another solution to this problem would be to run a coaxial cable from a router on the seventh floor straight

to the antenna. This solution would require an extremely long coaxial cable, which introduces a high degree

of signal attenuation, but the Raspberry Pi and router would be in a stable environment. An amplifier would

be placed right before the antenna to account for the significant line loss caused by the 200 feet of coaxial

 Broadband-Hamnet Microwave Communication System Page 5 of 53

Senior Design Project II | Final-v05 4/16/2016

cable. The coaxial cable is already installed, but another piece of hardware, the amplifier, is required for

this solution to remain viable.

The final proposed solution places the Linksys WRT54G on the roof and the RPi on the seventh floor. The

two machines would be connected by a 200 ft Ethernet cable. Ethernet is better than coaxial cable with

respect to signal attenuation, but there is no pre-existing Ethernet cable installed in the building. This

approach would remove environmental concerns for the RPi, but Linksys router is still exposed to the

weather.

Table 1.3.1 Proposed Hardware Solution Comparison

 Hardware Safety Line Loss Reliability Accessibility

SSH Approach - + - +

Coxial Approach + - + +

Ethernet Approach - + + -

1.3.2. Software

The software design calls for a communication protocol backbone. There are two viable transport layer

protocols, namely Transmission Control Protocol (TCP), and User Datagram Protocol (UDP). The

advantages of TCP include automatic packet sequencing functionality, and the transmission of the packets

is guaranteed. TCP is a large protocol, however, which means increased overhead in packet size and thus

reduction in transmission speeds. UDP on the other hand does not have automatic packet sequencing

functionality, and does not guarantee delivery. However, sequencing packets is not difficult, and UDP is an

extremely lightweight protocol, allowing for faster theoretical data rates.

Table 1.3.2 Comparison of Viable Transport Layer Communication Protocols

 Reliability Size Built-in-Functionality

TCP + - +

UDP - + -

1.4. Major Design and Implementation Challenges

1.4.1. Hardware

Setting up the hardware communication system comes with its own set of challenges. In our particular

communication system, a directional antenna (Yagi) will be placed on the roof while the operator of the

communication system will be on the 7th floor of the Temple Engineering building. The antenna has to be

connected to a router (Linksys WRT54G) and to our machine (Raspberry Pi). One possible solution is to

have the Raspberry Pi and Linksys WRT54G on the roof connected to a monitor in the radio station. This

solution would require environmental protection for both the Raspberry Pi and Linksys WRT54G. A second

possible solution is to have the Raspberry Pi on the 7th floor connected to the router on the roof through

 Broadband-Hamnet Microwave Communication System Page 6 of 53

Senior Design Project II | Final-v05 4/16/2016

Ethernet. Running Cat 5 Ethernet from the 7th floor to the roof will have a high degree of attenuation. The

router will also have to be protected from harsh environmental conditions. The final solution is to keep the

Raspberry Pi and Linksys WRT54G in the 7th floor station and connect the Linksys WRT54G to the Yagi

antenna through a coaxial cable. Coaxial cables also introduce a high degree of signal attenuation, especially

at higher frequencies. There is no environmental protection needed in this setup. To counteract the signal

attenuation, an amplifier could be used. The amplifier will also help give the transmitted signal enough

power to overcome the path loss, or free space attenuation that occurs. The amplifier will have to be placed

as close to the antenna as possible to give the received signal power to travel through the coaxial cable. The

amplifier will need to be powered on the roof. This can potentially be achieved by running DC power and

RF along the coaxial cable.

1.4.2. Software

Connecting two networked machines is simple if the destination IPv4 address is known by the sender

beforehand. In a mesh network, IP addresses may be forever changing making it difficult for clients to

confidently determine how to locate a server to communicate with. We propose a new network protocol at

the application layer termed “remote machine discovery protocol” (RMDP) that runs on a Raspberry Pi or

other capable Linux machine. The new protocol handles finding server IP addresses for you upon

connection to the mesh network. To accomplish an automatic remote machine resolution protocol we utilize

the advantage of being directly connected to a Broadband-Hamnet mesh node to find other connected

devices in the network. Each device on the network will run a local name-server that stores in a database

other peer clients in the network. Each device would then be able to perform peer to peer communication

directly without a need for a centralized name-server.

1.5. Implications of Project Success

The success of this project heavily relies on the community. If the amateur radio community gets behind

this project, it could benefit many different groups of people. The technology can be implemented in

disaster-prone areas, which would result in more reliable communication during emergencies.

The Broadband Hamnet Microwave Communication System, if successful, can also be used to provide

under-privileged areas of the world inexpensive, reliable, long-distance communication.

2. DESIGN REQUIREMENTS

2.1 Target Specifications

2.1.1. Hardware

The hardware must be able to support a mesh network topology and full duplex communication. It will also

give appropriate gain to transmit messages at long distances to overcome attenuation in free space (path

loss) and over a potential long coaxial cable run without violating FCC transmission rules. Impedance

matching between the Linksys WRT54G and the amplifier is required to maximize power transmission.

The amplifier will also need to be matched to its load (Yagi antenna).

Some hardware will be exposed to extreme conditions and must be able to operate as intended. This will

potentially include the Yagi antenna, an amplifier, a Raspberry Pi model 2, and a Linksys WRT54G.

2.1.2. Software

The software must be able to run on at least a Raspberry Pi model 2. This requirement implies that the

 Broadband-Hamnet Microwave Communication System Page 7 of 53

Senior Design Project II | Final-v05 4/16/2016

software be geared toward a Linux-based operating system.

The software must be able to automatically discover devices on the Local Area Network (LAN) of each

node. The LAN information of each node has to be shared with every other machine in the network.

Every machine in the mesh network must keep an up to date database of machine names paired with IPv4

addresses.

Every machine running this software must be able to handle multiple types of requests from any other

machine in the mesh network. These requests include adding new machines, information requests, and chat

services.

All machines must be able to communicate full duplex with any machine in the network.

3. APPROACH

3.1. Hardware Design

For creating a link between the roof of the Temple University’s engineering building and the Amateur

Radio Station located on the 7th floor, we propose three solutions. Solution 1 is to have the Raspberry Pi

and WRT54G router situated in the radio station with a coaxial connection to the Yagi antenna on the roof.

The coaxial run would be over 200ft in length with the transmission being analog at a frequency of 2.4 GHz.

A second proposed solution is to have two machines. A Raspberry Pi and router situated on the roof of the

building with a wireless connection to a separate desktop. The Raspberry Pi would communicate over the

Wi-Fi connection and translate the information to the router to repeat into the mesh network. The last

proposed solution is to have the Raspberry Pi in the radio station with an Ethernet connection to the router.

The Ethernet like the coaxial would be over 200ft in length however it would be a digital signal. A digital

signal would have less attenuation over such a long length of cable.

 Broadband-Hamnet Microwave Communication System Page 8 of 53

Senior Design Project II | Final-v05 4/16/2016

Figure 3.1.1: Solution 1 -- Router and Raspberry

Pi on 7th Floor

Figure 3.1.2: Solution 2 -- Router and Raspberry

Pi on Roof

Figure 3.1.3: Solution 3 -- Router on Roof and Pi on 7th Floor

Our team chose solution 1 seen in Figure 3.1.1 for the hardware design of the communication system. It

was chosen because it eliminates the need to protect both the Raspberry Pi and Linksys WRT54G from

harsh environmental conditions. The Yagi antenna and amplifier can withstand these conditions without

modification. A small box may be constructed to surround the amplifier to protect it from water if needed.

This setup also comes with its own set of problems. A long coaxial run is needed to connect the Linksys

WRT54G to the amplifier, which introduces transmit and receive attenuation problems. The amplifier is

going to be attached to the antenna on the roof to give small received signals sufficient power for the

Linksys WRT54G to receive.

There are two cables available to transmit a 2.4 GHz signal at a distance of 60 m which would connect the

Linksys WRT54G to the amplifier. These cables are the LMR-600 and RG213. Both the LMR-600 and

RG213 are coaxial cables. The cable attenuation is found in dB/100m and is taken from standard

manufacturing standards set for coaxial cables. It is also important to note the Linksys WRT54G can output

power at 19 dBm (0.079 W) seen from the router firmware page.

 Broadband-Hamnet Microwave Communication System Page 9 of 53

Senior Design Project II | Final-v05 4/16/2016

3.1.1. Long Length Coaxial Cable Performance

Test with LMR-600

The attenuation of the LMR-600 coaxial cable at 2.4GHz will be explored. Calculating the attenuation will

show how much power can be delivered to a load, in this case an amplifier. The LMR-600 has an attenuation

of 14.2 dB/100 m. For 60 m, the attenuation will be 8.52 db (Coaxial Cable Attenuation Charts , n.d.).

Therefore, power delivered to the amplifier is 10.4 mW which is equivalent to 10 dBm.

(
𝑃𝑜
𝑃𝑖
) 𝑑𝐵 = 10log10(

𝑃𝑜
𝑃1
)

Equation 3.1

−8.52𝑑𝐵 = 10 log10
𝑃𝑜

0.079𝑊

10−
8.52
10 =

𝑃𝑜
0.079𝑊

0.1318 =
𝑃𝑜

0.079𝑊

𝑃𝑜 = 0.0104𝑊

Test with RG213 Coax

Now, the attenuation of the RG213 coaxial cable at 2.4 GHz will be explored. The RG213 has an attenuation

of 39.4 dB/100 m. For 60 m, the attenuation will be 23.64 db (Coaxial Cable Attenuation Charts , n.d.).

Therefore, power delivered is 75 pW or << 0 dBm. This is the max power to be delivered to the output

which in this case will be an amplifier.

−30.2𝑑𝐵 = 10 log10(
𝑃𝑜

. 079𝑊
)

10−3.02 = (
𝑃𝑜

0.079𝑊
)

𝑃𝑜 = 7.5𝐸 − 5𝑊

Both attenuation calculations assume ideal impedance matching between the Linksys WRT54G and the

amplifier. The figure below compares the coaxial cable attenuation at varying distances at 2.4 GHz. As

mentioned before, the LMR-600 performs better at longer distances.

 Broadband-Hamnet Microwave Communication System Page 10 of 53

Senior Design Project II | Final-v05 4/16/2016

Figure 3.1.4: Attenuation of 2.4 GHz signal of Coaxial Cable

3.1.2. Power Amplification

An amplifier can be used to give the signal extra power for

transmission. The specs for an inexpensive amplifier listed below.

 Operation Range: 2400-2500 MHz.

 Operation Mode: Bi-directional, half-duplex, Auto-

Switching via carrier sensing.

 Frequency Response: ± 1 dB over operation range.

 Input Power: 3 dBm (Min.)-20 dBm (Max.).

 Input Power 5 ~ 20 dBm.

 Optimal Input Power 9 ~ 13 dBm.

 Output Power: 8000 mW/39 dBm nominal for

802.11 b/11 Mbps.

 Connector: SMA Receptacle, 50 ohm.

 Transmit Gain: 17dBm nominal.

 Receiver Gain: 11dBm.

 Receive Noise Figure: 3.0 dBm nominal.

 Operating Temperature: -40 to 70 degree.

 Operating Humidity: Up to 95% relative humidity.

 Material: Cast Aluminum.

 Size:10.3 cm x 7.7 cm x 2.1 cm

 Weight: 785 g

Our router is operating within the 2400 MHz range, proved with the faraday cage and spectrum analyzer

(see Section 4.1.2). If the LMR-600 cable is used, the optimal input power will be achieved with the power

amplifier being 60 m away from the Linksys WRT54G router and right next to the Yagi antenna. The

Figure 3.1.5: 2.4 GHz Power Amplifier A

 Broadband-Hamnet Microwave Communication System Page 11 of 53

Senior Design Project II | Final-v05 4/16/2016

optimal input power from Figure 3.1.5 is 9-13 dBm, where the LMR-600 will supply 10 dBm as seen in

Section 3.1.1.

It is also possible that the amplifier can be placed right next to the router. The router specifications state it

supplies power of 79 mW (19 dBm). This power is too high for the optimal power but should still work as

it is in the input power range. A pad could potentially be used here to attenuate the signal into the optimal

input range, but that will also attenuate the signal being received, which is undesirable.

The next amplifier in consideration is the Wii-link Wi-Fi Amplifier. In 3.1.1 the transmissions power of the

amplifier can be seen to be 36 dBm with as little as 19 dBm (the maximum output power of our router).

Figure 3.1.6: Power Amplifier 2 Specs

Figure 3.1.7: 2.4 GHz Power

Amplifier B

Figure 3.1.8: Power Amplifier 2 Transmission Power

Overall, Amplifier B is the better choice for the communication system. It can accept a higher input level

than Amplifier A. Both amplifiers have the same gain, but with a higher input, more output can be achieved

which is desired. Therefore, any Amplifier B will be the amplifier referenced throughout the project.

The amplifier will supply a gain of 17 dBm, with the input to the amplifier being 10 dBm after 60 m of

LMR-600 coaxial cable, the output to the antenna will be 27 dBm (500 mW). The maximum input to this

amplifier is 26 dBm.

 Broadband-Hamnet Microwave Communication System Page 12 of 53

Senior Design Project II | Final-v05 4/16/2016

3.1.3. Path loss

The next item of concern is the loss in free air the signal will have; commonly referred to as the path loss

or path attenuation. Path loss can be defined as:

 𝑃𝑎𝑡ℎ𝑙𝑜𝑠𝑠(𝑑𝐵) = 𝐾𝑢 + 20 log(𝑓𝑅) − 𝐺1(𝑑𝐵) − 𝐺2(𝑑𝐵)1 Equation 3.2

𝐾𝑈 is a constant depending on what units the distance R is, f is the frequency in MHz, and 𝐺1, 𝐺2 is the gain

of the receiving and transmitting antenna. The gain of the Yagi antenna in our communication system is

13 dBi. The distance was calculated as a straight line distance measurement using GPS coordinates and

Google maps.

Figure 3.1.9: GPS coordinates of sending point

Figure 3.1.10: GPS coordinates of receiving point

Figure 3.1.11: Distance between two GPS coordinates

Using the straight line distance, we find the loss in free space from the output of our amplifier to the output

of the receiving antenna.

𝐾𝑢 = 32.45𝑓𝑜𝑟𝑘𝑚, 𝐺1 = 𝐺2 = 13𝑑𝐵𝑖, 𝑓 = 2400𝑀𝐻𝑧, 𝑅 ≅ 25𝑘𝑚

𝑃𝑎𝑡ℎ𝑙𝑜𝑠𝑠(𝑑𝐵) = 32.45 + 20log(2400𝑀𝐻𝑧 ∗ 25𝑘𝑚) − 13 − 13 = 102.01𝑑𝐵

3.1.4. Link Budget

The link budget of a system is the total attenuation or gain of a communication system. Link budget

accounts for the gain or attenuation of the transmitter, through the medium, line loss, antenna gain, receiver

gain, etc.

In our communication link, the amplifier will supply a gain of 17 dBm, with the input of the amplifier being

10 dBm after 60 m of LMR-600 coax, the output to the antenna will be 27 dBm. The maximum input to

1 (MILLIGAN, 2005)

 Broadband-Hamnet Microwave Communication System Page 13 of 53

Senior Design Project II | Final-v05 4/16/2016

for our amplifier is 26 dBm.

The power seen by the receiver after experiencing the path loss of 102.01 dB, assuming it is directly

connected to the output antenna can be seen as follows.

 𝑅𝑥𝑃𝑜𝑤𝑒𝑟 = 𝑇𝑥𝑃𝑜𝑤𝑒𝑟 − 𝑃𝑎𝑡ℎ𝐿𝑜𝑠𝑠 Equation 3.3

𝑅𝑥𝑃𝑜𝑤𝑒𝑟 = 27𝑑𝐵𝑚 − 102.01𝑑𝐵 = −75.01𝑑𝐵𝑚

This output assumes ideal, matching impedance connections, so no signal power is reflected back onto the

transmission line.

The receive sensitivity of the Linksys WRT54G is around -80 dBm, so the received power of -75.01 dBm

is within the demodulating capabilities of the router.

Figure 3.1.12: Communication Performance with Proposed Broadband Hamnet Equipment

3.1.5. Powering the Amplifier

The amplifier will need sufficient power to be able to give transmitting and receiving gain. The amplifier

comes with a standard DC power cord however there is no AC mains outlet on the roof. Therefore, a method

has to be devised to power the amplifier from elsewhere. Since the coaxial cable is connecting the roof and

the 7th floor, power will be delivered across the coaxial cable along with the RF signal. First, the DC

resistance of the coaxial cable (LMR-600) is 1.73 Ω/1000 ft (Systems). The DC will travel along 200 ft

over the LMR-600. Therefore, there is a total DC resistance of 0.346 Ω. Using the reactance of both the

inductor and capacitor, the DC and RF frequencies can get blocked from the amplifier input and amplifier

power respectfully. The reactance can be thought as the frequency dependent resistance of a component.

 Broadband-Hamnet Microwave Communication System Page 14 of 53

Senior Design Project II | Final-v05 4/16/2016

𝑋𝐶 =

1

2𝜋𝑓𝐶

Equation 3.4

 𝑋𝐿 = 2𝜋𝑓𝐿 Equation 3.5

The capacitor is used to block the DC from entering the RF source and the RF input of the amplifier. The

reactance becomes much larger at smaller frequencies. The inductor (or choke) is used to block the RF from

the power supply source and power supply input to the amplifier. The reactance of the inductor will grow

as the frequency increases. Additional filter capacitors are used to keep the RF out of the power supply

input to the amplifier. The general schematic can be seen in Figure 3.1.13 and the verification of the design

can be seen in Figure 3.1.14.

Figure 3.1.13: Schematic to power the amplifier from the 7th floor

V1

12 V

C1

100µF

L1

100mH

R1

.346Ω V2

0.1 Vpk
2.4GHz
0°

AmplifierB

AD9620AD

L2

100mH

C2

100µF

C3

100µF

Coax cable DC resistance

Antenna

Power input

RF input

 Broadband-Hamnet Microwave Communication System Page 15 of 53

Senior Design Project II | Final-v05 4/16/2016

Figure 3.1.14: Simulating Power and RF down coaxial cable

3.1.6. Theory of Yagi-Uda Antenna Design

A Yagi-Uda antenna uses mutual coupling between standing-wave current elements to produce a

unidirectional radiation pattern. The Yagi antenna consists of n elements, one of which is driven, while the

other n-1 are parasitic elements. The driven element is the element that is fed with the signal to be

transmitted, while the parasitic elements act as either reflectors or directors. Whether a parasitic element

acts as a reflector or a director depends on the spacing of the individual elements from the driven element,

and is determined by Equation 3.6. The equation describes the power pattern difference between the

radiation pattern at =0 and =180˚ with respect to the driven element. Whether a parasitic element acts

as a reflector or director also depends on the length of the element. In general, a reflector is shorter than

both the director and driven element.

 |∆𝐸|2 =−2𝐼𝑟 sin(𝜕) sin(𝑘𝑑) Equation 3.6

In Equation 3.6 ∆E is the normalized pattern response, and 𝐼𝑟𝑒
𝑗(𝑘𝑑𝑐𝑜𝑠(𝜃)+𝜕) is the current of the parasitic

element relative to the driven element. This means that 𝐼𝑟𝑒
𝑗(𝑘𝑑𝑐𝑜𝑠(𝜃)+𝜕) =

𝐼2

𝐼1
, and I2 and I1 can be found

from the matrix equation show in Equation 3.7.

V1

12 V

C1

100nF

L1

100nH

R1

.346Ω V2

0.1 Vpk
2.4GHz
0°

L2

100nH

C2

100nF

C3

100nF

Coax cable DC resistance

Power input

RF input

R2

1kΩ

R3

1kΩ

Probe1

 V: 27.9 mV
 V(p-p): 199 mV
 V(rms): 70.7 mV
 V(dc): 8.61 uV
 I: -27.9 uA
 I(p-p): 199 uA
 I(rms): 70.7 uA
 I(dc): -8.61 nA
 Freq.: 2.40 GHz

Probe2

 V: 12.0 V
 V(p-p): 85.2 nV
 V(rms): 12.0 V
 V(dc): 12.0 V
 I: -12.0 mA
 I(p-p): 103 pA
 I(rms): 12.0 mA
 I(dc): -12.0 mA
 Freq.: 2.40 GHz

Probe4

 V: 27.9 mV
 V(p-p): 199 mV
 V(rms): 70.7 mV
 V(dc): 8.61 uV
 I: -154 uA
 I(p-p): 329 uA
 I(rms): 116 uA
 I(dc): 11.0 nA
 Freq.: 2.40 GHz

Probe3

 V:
 V(p-p):
 V(rms):
 V(dc):
 I:
 I(p-p):
 I(rms):
 I(dc):
 Freq.:

 Broadband-Hamnet Microwave Communication System Page 16 of 53

Senior Design Project II | Final-v05 4/16/2016

 [𝑉] = [𝐼][𝑍] Equation 3.7

Z is the matrix describing the mutual impedance between each of the elements on the antenna. In Equation

3.7, there is only one nonzero element in [V], and it is the voltage applied to the driven element. It is

important to note that the current in each element is assumed to be sinusoidal (Milligan, 2005).

With a known element spacing d, and after solving Equation 3.7 for [I], we can determine whether the

element is a reflector or a director by solving Equation 3.6 for ∆E. There are three possible outcomes and

they are described below.

 Case 1. ∂ = 180˚ and ∆E = 0. Equal pattern levels in both directions.

 Case 2. 180˚ < ∂ < 360˚ and ∆E > 0. The parasitic element is a director because the radiation

pattern is greater in its direction with respect to the driven element.

 Case 3. 0˚ < ∂ < 180˚ and ∆E < 0. The parasitic element is a reflector because the pattern in

the direction of the driven element is greater than the pattern in the direction away from the

driven element. (Milligan, 2005)

It has been proven that an element spacing of about 20𝜆, where 𝜆 is the wavelength of the driving signal,

is one of the criteria describing Yagi design that yields the maximum directional gain.

3.2. Software Design

The software design begins with the version of the Broadband-Hamnet firmware that is flashed on the

router. The firmware used during our time with this project is Broadband-Hamnet_v03.1. This firmware is

chosen because it is the latest stable release of the firmware.

The software developed in this project is an application that provides peer-to-peer communication for users

by utilizing the ad-hoc mesh framework provided by Broadband-Hamnet. When multiple machines begin

to share data with one another, a protocol becomes essential. The communication protocol ensures that each

side of the communication link understands what is being sent and how to respond accordingly.

There are multiple protocols implemented and developed in this project. We design a protocol that our

application must adhere to and a protocol that the Linksys WRT54G routers utilize to register remote

machines to the network. We also take advantage of the TCP/IP infrastructure, commonly referred to as the

TCP/IP stack, which is standard on all computers.

3.2.1. Theory of TCP/IP Networking Stack

A typical protocol architecture consists of multiple layers, with each layer performing different functions.

The standard architecture contains the following layers; Physical, Network Access/Data Link, Internet,

Transport, Application. The Physical layer takes care of the interactions between the computer’s hardware

and the transmission medium. It reports data rates, signal characteristics, traffic on the medium and other

related matters. The Network access/data link layer is responsible for routing functions the direct packets

between two machines on the same network. The Internet layer performs similar tasks to the Network layer,

however the routing functions are concerned with routing information across multiple networks. The

Transport layer provides the end-to-end protocol between two computers. The application layer contains

the logic that supports decoding of messages for use with a particular application (Stallings, 2014).

For this application, the Transmission Control Protocol (TCP) is the best transport layer protocol. TCP

guarantees message delivery and has error detection/correction and packet sequencing built in. User

Datagram Protocol (UDP) was also considered, but was not chosen because UDP does not guarantee

 Broadband-Hamnet Microwave Communication System Page 17 of 53

Senior Design Project II | Final-v05 4/16/2016

message delivery and does not have a packet sequence functionality (Stallings, 2014) (Touch, 2016). The

TCP header as well as the IPv4, which is the Internet layer protocol commonly used with TCP is shown

and explained below.

Figure 3.2.1: TCP Header (Stallings, 2014, p. 42)

Figure 3.2.2: IPv4 Header (Stallings, 2014, p. 43)

In order to understand how the TCP header is used in an actual data transfer, an actual data packet

intercepted by the packet sniffing program, Wireshark, will now be analyzed.

Figure 3.2.3: Data Packet from Wireshark

The 34th byte in the packet seen above marks the beginning of the TCP packet. Everything preceding the

34th byte is the IP protocol header and physical layer protocol. Those headers are out of the scope of this

analysis and are ignored. The TCP packet displayed in Figure 3.2.3 is decoded in Table 3.2.1.

 Broadband-Hamnet Microwave Communication System Page 18 of 53

Senior Design Project II | Final-v05 4/16/2016

Table 3.2.1: TCP Header

BYTE # Meaning HEX Rep. Dec. Rep.

34-35 (1-2) Source Port c0 4e 49230

36-37 (3-4) Destination Port 19 fd 6653

38-41 (5-8) Sequence Number cc 6e 6d f7 3429789175

42-45 (9-12) Acknowledgment Number 00 00 00 00 0

46 (13) Header Length 8 8

47 (14) Flags 0000 0010 (binary) 02 (hex)

48-49 (15-16) Window 2000 8192

50-51 (17-18) Checksum 86 46 34374

52-53 (19-20) Urgent Pointer 00 00 0

54-57 (21-24) Max Segment Length 02 04 05 b4 33818036

58 (25) No-Op 01 1

59-61 (26-28) Window Scale 03 03 08 197384

62 (29) No-Op 01 1

63 (30) No-Op 01 1

64-65 (31-32) TCP SACK Permitted 04 02 1026

In Table 3.2.1, the TCP packet is broken down byte-by-byte. The first two bytes indicate the source port.

All ports ranging from 49152–65535 are used for private or temporary services, as well as automatic

allocation of ephemeral ports (Touch, 2016). An ephemeral port is a short-lived transport protocol port

allocated automatically by the Internet protocol software. It is used by various transport protocols, including

TCP as the client-side port of client-server applications.

The next two bytes indicate the port the receiving machine is listening on. The port 6653 is the port bound

to the socket. Ports and sockets will be discussed in more detail later in this section.

The next four bytes indicate the sequence number. It is important to note that the sequence number does

not start at 0. This is a relative sequence number, which is initially assigned randomly, but incremented

after the initialization of the communication link between the client and server.

The next four bytes indicate the acknowledgement number. The acknowledgement number contains the

sequence number of the next data octet that the TCP entity expects to receive.

The 13th byte serves two purposes. The 4 most significant bits represent the header length. It is important

https://en.wikipedia.org/wiki/Port_number

 Broadband-Hamnet Microwave Communication System Page 19 of 53

Senior Design Project II | Final-v05 4/16/2016

to note that the header length actually represents the number of 32-bit words in the header. Therefore, in

order to calculate the number of the bytes in the header, multiply the decimal representation of these 4 bits

by 4. The packet shown in Figure 3.2.4 shows an 8 in its header length. 8*4=32, which is the correct number

of bytes in the header. The 4 least significant bits of the 13th byte are reserved.

The reserved bits from the 13th byte and the 14th byte are set aside for flags. Each of these twelve bits

represent a different flag. The flags are shown in Figure 3.2.4.

Figure 3.2.4: TCP Protocol Flags

Figure 3.2.4 requires further explanation. The Nonce flag is for ECN concealment protection. The

congestion window reduced flag is set when it receives a packet with the ECN-Echo flag set. It also

indicates that it responded in congestion control mechanism (Cerf & Khan, 1974). The ECN-ECHO flag is

used for explicit network congestion notification. The urgent flag is for quality of service (QOS) or priority

packets. The acknowledgement flag indicates that the acknowledgement flag is significant. All flags after

the initial SYN packet should have this flag set. The PUSH flag, when set, asks to push the data to the

receiving application. The Reset flag resets the connections. This flag is often set when a receiver blocks

an incoming connection. Hackers often use this flag to search for open ports. The SYN flag is used to

synchronize sequence numbers. Only the first packet sent from each end should have this flag set. The FIN

flag indicates that there is no more data from the sender (Stallings, 2014) .

The 15th and 16th byte indicate the window length. The window length is for flow control credit allocations.

It contains the number of octets, starting with the sequence number indicated in the acknowledgement field

that the sender is willing to accept (Stallings, 2014).

The 17th and 18th bytes indicate the checksum, which is used for error checking.

The 19th and 20th bytes contain the urgent pointer. This value, when added to the segment sequence number,

contains the sequence number of the last octet in a sequence of urgent data. This allows the receiver to

know how much urgent data to expect (Stallings, 2014).

The 21st-32nd bytes of the packet are options and padding and the number of bytes included in this section

is variable. Bytes 21-24 represent the maximum segment length able to be received. The most significant

byte indicates that it is a maximum segment length option. The next byte indicates how many bytes the

option takes up, and the final two bytes indicate the MSS, which in this case is 1460.

The 25th, 29th, and 30th bytes are No-Op bytes.

Bytes 26-28 indicate a window scaling option. This option is used to increase TCP’s maximum receive

window size of 65,535 bytes.

 Broadband-Hamnet Microwave Communication System Page 20 of 53

Senior Design Project II | Final-v05 4/16/2016

The 31st and 32nd bytes are the TCP SACK option. It stands for TCP Selective Acknowledgement. This flag

allows receivers to tell the sender what packet it received, so the sender can retransmit the missing packets

(Mathis, 1996).

3.2.2. Theory of Socket Programming

The start of the application design consists of two programs. One program sends a message termed a client

and the other program receives the message termed a server. These programs each run on a Raspberry Pi.

Half Duplex Socket Programing – One Message Limit

We introduce socket programing with a simple send and receive (half duplex) example. Half duplex means

that each machine can only send or receive at any given time. The example receiving program can be seen

in Figure 3.2.5, while a compatible sending program can be seen in Figure 3.2.6. The receiving code must

be run first to create a socket. Sockets are a high level networking programing interface that allows a

programmer to send and receive data at the transport level layer of the TCP/IP stack. To create a TCP

datagram we first create a socket with the predefined ‘socket.AF_INET’ and ‘socket.AF.SOCK_STREAM’

data types (Socket - Linux socket interface, 2015). ‘AF_INET’ tells the socket we are using the IPv4

addressing protocol. ‘AF.SOCK_STREAM’ is the predefined name instructing the socket to use the TCP

communication protocol. The Raspberry Pi acting as the server is bound to a port and IP address creating a

listening socket. The port and IP address are declared in the beginning of the PI’s program. The receiving

code listens for up to one client trying to connect to it that will ultimately establish the communication link.

Now, the client sending information is free to a message to the server. In the example, shown below our

server will simply echo the message sent by the client to stdout.

 Broadband-Hamnet Microwave Communication System Page 21 of 53

Senior Design Project II | Final-v05 4/16/2016

Figure 3.2.5: rec_TCP.py (v00)

Figure 3.2.6: send_TCP.py (v00)

After we have bounded the connection you will see the ‘listen’ instruction on the sever side. The listen

command limits the number of concurrent connections the server will maintain (Python, 2016). In the

simple test provided we will only allow one client to connect to the server causing all other incoming

connections to be refused. Lastly, the ‘socket’ instruction is where our server waits for clients to connect to

it. When a new client connects the server the listen function will create a new socket referenced by the

‘conn’ variable from the IPv4 address referenced by the ‘addr’ variable. We can now use this new socket

to the client to ‘recv’ or receive the message being sent by the client.

On the client side we ignore the ‘listen’ and ‘accept’ instructions and instead jump straight to the ‘connect’

instruction. ‘connect’ is a built in function in the socket class that establishes a link to the tuple object

containing the server IPv4 address and port you wish to connect to (Python, 2016). Any failure to

successfully connect to a server will throw an exception such as “connection refused”. A “connection

refused” exception is commonly seen when the server object is not initiated to accept connections or has

reached its upper limit of number of connected clients defined in the ‘listen’ instruction.

Running the above code demonstrates the user interaction. We are prompted with an “Enter Message:”

prompt on the client side. The sever side sits idle waiting for the client to create and send a message to it.

 Broadband-Hamnet Microwave Communication System Page 22 of 53

Senior Design Project II | Final-v05 4/16/2016

Figure 3.2.7: Half Duplex One Message Send -- Waiting

Upon entering the message our client then proceeds to send the message over the socket. A successful

completion of the program can be seen in Figure 3.2.8. The program received the message, and closed the

socket, terminating any further communication between server and client.

Figure 3.2.8: Half Duplex One Message Send – Terminated

Half Duplex Socket Programing – Multiple Messages

In the previous example our socket program can send and receive one message. The next step is to send

and receive multiple messages on the same connection. The receiving program did not change for this step

as the ‘recv’ instruction is already nested inside a never ending while loop. The new sending program can

be seen in Figure 3.2.9. A while loop was used around the ‘send’ instruction so that multiple messages can

be sent to a server. Since the send program is also nested inside a never ending while loop, we program in

a key phrase that when detected will cause the program to break out of the loop. In the example below any

message entered ‘EXIT’ will cause the socket to close on the client side. Subsequently when the server

knows the client socket (‘conn’) is closed when when it runs its ‘recv’ function and the received message

length is less than zero. After the client socket is closed the server will know no further messages will be

sent over the socket by the client so it will exit.

 Broadband-Hamnet Microwave Communication System Page 23 of 53

Senior Design Project II | Final-v05 4/16/2016

Figure 3.2.9: send_TCP.py (v01)

A verification of the program output can be seen in Figure 3.2.10. Notice that multiple messages are sent

and received and when the ‘EXIT’ message is sent the program ends.

Figure 3.2.10: Full Duplex One Message Send – Terminated

Full Duplex Socket Programing – Multiple Messages

Now, the program should be able to send and receive messages from either machine once a connection is

established. The connection should break when one machine types “EXIT”. To create such a program

requires that both sides of the communication channel run both a server and client application

simultaneously. Running both will require the use of threading.

 Broadband-Hamnet Microwave Communication System Page 24 of 53

Senior Design Project II | Final-v05 4/16/2016

A threaded application allows for a complier to run two instructions or in our Python code two functions in

parallel (Zograf, n.d.). Python gives programmers a threading class to help aid in creating thread safe code.

Thread safe code ensures that one thread does not modify the memory blocks being actively worked upon

by another thread. The end goal is to have one thread run the server code in the background while our main

program thread runs our client-send program we created before. To create the threads, we create a thread

object with a parameter of what function the thread is to run (Python, 2016). We can set the thread to be a

daemon thread which informs the complier to exit the thread if all other non-daemon threads have closed.

Lastly we start a thread by referencing the threading object by name and running the ‘start()’ instruction

(Python, 2016). An example of threaded socket programming can be seen in the final project example code

(see APPENDIX).

Now we need to be able to communicate between threads within the running application so that the client

and know when the other each is sending or receiving a message. To communicate between threads we

introduce a Python data structure called a ‘queue’. A ‘queue’ object allows for one thread to put information

into a buffer that can be retrieved by a separate thread when it is ready. Queues are a unique data structure

in that follows the standard of first in first out (FIFO). Items put into the queue will be processed in the

order in which they were place into the queue. When a thread needs to send data to another thread it queues

the information and the second thread can then pull items from the front of the queue. ‘queue’ objects are

a standard thread safe communication medium.

Going into detail about queues and threads is beyond the scope of this paper so we omit the source code for

this portion of the application example. Instead we provided the desired output of a correctly programed

threaded send and receiving application.

Figure 3.2.11: Full Duplex Communication

3.2.3. Creating the Remote Machine Discovery Protocol (RMDP)

We will now use the basis of socket server/client side programing to create our new network protocol

termed Remote Machine Discovery Protocol (RMDP). In section 3.2.1 Theory of TCP/IP Networking

Stack, we had hardcoded the destination IPv4 address into our script. The RMDP will replaces the hardcode

value and instead resolve addresses for you by attempting to connect to nearby clients.

RMDP Overview

To begin, we define our application protocol so that upon start of the application the local device will open

a server socket to listen for incoming client connections. The second step is for our device to contact the

 Broadband-Hamnet Microwave Communication System Page 25 of 53

Senior Design Project II | Final-v05 4/16/2016

local Broadband Hamnet router to begin finding other possible servers running our application. The

application sends a command to the local router that informs it to contact all other routers within its vicinity,

and requests the ARP table from the nearby routers. The ARP table provides a listing of all attached LAN

devices attached the respective node. Compiling a listing of all ARP tables provides a status of the all

connected devices in the mesh network. The local router gathers this list of potential devices which it then

sends back down to our local device. After the RPi receives this listing of potential existing servers within

the mesh network, it proceeds to contact each device to try and gather the most up to date information about

the TOIChat network. It is important to note the distinction between the overlaying Ad-Hoc mesh network

and the TOIChat network. The Ad-Hoc mesh network is the framework provided after installing

Broadband-Hamnet. The TOIChat network is our project specific network or application that allows for

direct autonomous peer-to-peer communications.

Once our local device has found another device running an instance of the TOIChat application, we will

send a message asking for the database of other client/servers in the network. We will then use that

information to setup and or update newly connected local application’s NameServer database.

RMDP Implementation

To begin our discussion on RMDP implementation, an understanding of Broadband-Hamnet is required.

The Broadband-Hamnet firmware looks for another mesh nodes by scanning the surrounding wireless

network for a common Service Set Identifier (SSID). The SSID is the name of the wireless network

broadcasted by a router, which Broadband-Hamnet setups up to uniquely define the mesh network. An

example of a Broadband-Hamnet SSID is BroadbandHamnet-20-v3. Once two routers with the preset

Broadband-Hamnet SSID come in each other, the mesh network is established. IPv4 addresses across both

nodes can now be connected to each other as the routing tables are updated to contain the domain present

at each node. This process of updating, adding, and removing nodes from the mesh-network is done

automatically in the Broadband-Hamnet firmware.

Figure 3.2.12 Remote Machine Discovery Protocol (RMDP)

The RMDP operates on the assumption that at least two routers are in contact with each other. The first step

of the protocol involves one router sending a request to the other router asking for the IPv4 addresses of the

machines connected to the router’s LAN. The router responds to the other router’s request appropriately,

and sends back its LAN information. Once the router gets a response, the information is forwarded to the

machine connected to the LAN, which in the scope of this project, is a Raspberry Pi. Finally, once the

Raspberry Pi has the IPv4 addresses of the all remote LAN devices, it sorts the list by shortest Internet

Control Message Protocol (ICMP) travel time, and proceeds to try and establish a socket connection over

the TOIChat specified port 5005.

The RDMP protocol is run on the router which send requests and responses using the Linux utility netcat

 Broadband-Hamnet Microwave Communication System Page 26 of 53

Senior Design Project II | Final-v05 4/16/2016

(“nc”). The netcat utility allows communications between machines utilizing a TCP or UDP protocol

running the Unix environment. Netcat is used in this case as opposed to the Berkeley Socket API used in

the rest of the project because of the limited memory available on the Linksys WRT54G. Since netcat is a

standard utility found on Unix environments over the past few decades, it is already pre-installed on the

WRT54G, so there is no need to install a C complier or an interpretive programming language such as

Python.

The implementation of the RMDP can be found at our GitHub page referenced in the APPENDIX.

3.2.4. TOIChat – Backend Development

Layout of the project starts by listing the desirable features for the application. First and foremost we require

an internal database to store the clients and overall state of the TOIChat network. Secondly we need a server

application that is continuously running in the background listening for new client connections. We need

code that interacts with the Remote Machine Discovery Protocol (RMDP). We want functionality that

allows users to interact with each other using text messaging similar to what you would find when using

Skype or WhatsApp. A client side application is required that will send messages out onto the network to

listening server objects. Finally the end user needs some user interface to interact with all the previously

mentioned functionality.

toiChatNameServer

The final class design is broken up into multiple parts. The toiChatNameServer is at the heart of the

application, in that it stores the state of network. In the traditional sense, Nameservers are centralized servers

running on the internet that translate domain names such as http://www.google.com to IP addresses. A

string such as google.com is easier to remember than an IPv4 address. For example google.com resolves to

an IPv4 address of 172.217.4.78. Our Nameserver object will contain a lookup table for resolving call-signs

to IPv4 address. The table is constructed using the Python dictionary data structure that allows for fast entry

lookups (O(1)) since it is implemented as a hash table (Python, 2016). Functionality for this object also

include the need to be able to add and remove entries from the dictionary in a thread safe manner. We use

the lock object from the Python Threading library to lock that internal Python dictionary for when it is being

used by various threads inside the class. The lock object provides for a thread safe environment.

Figure 3.2.13: Internet Control Message Protocol (ICMP) Ping Packets

Since the toiChatNameServer will interact with other clients in the TOIChat network, we need to provide

functionality to handle received messages. Simple packets such as the ICMP are standards that are already

programmed inside the TCP/IP stack. Our applications need for more complex message types establishes

the need for a more multifaceted message protocol that leads us to investigating Google Protobuf.

http://www.google.com/

 Broadband-Hamnet Microwave Communication System Page 27 of 53

Senior Design Project II | Final-v05 4/16/2016

toiChatNameServer

- DNS_PING_INTERVAL: int = 20
- toiChatClient: toiChatClient

+ printDNSTable()
+ printClients()
+ getMyIP(String iface): String myIPv4
+ addToDNS(String clientName, String clientIPv4, String dateAdded, String description)
+ removeDNSByHostname(String clientName)
+ updateMyName(String oldName, String newName)
+ lookupIPByHostname(String hostname): String clientIPv4
+ lookupHostnameByIP(String clientIPv4): String hostname
+ lookupAddedByHostname(String hostname): String dateAdded
+ lookupUpdateByIP(String clientIPv4): String hostname
+ lookupDNSLegnth(): int
+ lookupDescByHostname(String hostname): String description
+ syncDNS(String clientIPv4): Boolean
+ attemptFindServer(String toiServerPort): Boolean
+ handleDnsMessage(DnsMessage): Boolean
+ handleRegisterDNS(DnsMessage)
- handleRequestDNS(DnsMessage)
- createRegisterDnsMessage(): DnsMessage
- createRequestDnsMessage(): DnsMessage
- __loopPingDNS__()
- __pingDNSAvaliable__()

Figure 3.2.14: toiChatNameServer - UML Sketch

Google Protobuf

Figure 3.2.15: Google Protobuf Compared against other Popular Encoders (Epaminondas, 2016)

For this project we looked into various data formats that allow for serialization of data consisting of

attribute-value pairs. Popular today is the JSON data format which comes from the JavaScript world. When

investigating the performance of JSON for our specific needs, we found that it was outperformed by

Google’s Protobuf standard. The Google Protobuf standard is relatively new, and is capable of compressing

data better than JSON (Epaminondas, 2016). Having a smaller message footprint ensures that the limited

bandwidth available to us while using the Broadband-Hamnet mesh network is best utilized. The new

 Broadband-Hamnet Microwave Communication System Page 28 of 53

Senior Design Project II | Final-v05 4/16/2016

Protobuf standard also allows for upgrading of the message protocol in the future if needed. Since the

software we are developing may have many unforeseen applications, having the flexibility of updating the

protocol is vital for its success. A summary of the Protobuf versus other popular tools is provided via Figure

3.2.15.

The Protobuf encoder is used as the basis for all message delivered via back-end TOIChat operations. Each

individual class object will have an associated Protobuf message type that it will be able to detect and handle

appropriately.

toiChatServer

Figure 3.2.16: Server Multithreaded Client Handling

Next we define the toiChatServer, which processes any listens and process any incoming connections to

the local node. The toiChatServer contains two threads: a ServerListener and a MessageProcessor. The

SeverListener is a thread running solely to listen for new client connections from the overlaying

BroadBand-Hamnet network. After a client has connected to the server, the server hands off message

processing to the MessageProcessor thread. The MessageProcessor thread takes in a socket, receives the

full message from the connected client, and outputs the message (constructed using Protobuf) to the

appropriate class for message decoding and handling.

The toiChatSever has an aggregation relationship with every toiChat object referenced in this paper expect

for the toiChatter object. The toiChatter object has a composition relationship (is owned) with the

toiChatServer object. For every received message seen across the server socket, the toiChatServer uses a

toiChatter object to handle the message for that specific client. If no toiChatter object is found, the

toiChatServer creates a new toiChatter object to handle the message.

 Broadband-Hamnet Microwave Communication System Page 29 of 53

Senior Design Project II | Final-v05 4/16/2016

toiChatServer

- toiChatNameServer: toiChatNameServer
- PORT_TOICHAT: int = 5005

- __init__()
- __del__()
+ startServer(): Boolean
+ stopServer(): Boolean
+ statusServer(): Boolean
+ updateServerPort(int=5005): Boolean
+ addToiChatter(toiChatter): Boolean
+ removeToiChatter(toiChatter): Boolean
- __toiChatListener__()
- __communicate__()
- __recvall__(Socket, String clientIPv4, int
MSGLEN): String
- __messageProcess__(Socket, String rawMSG):
Boolean
- __printToUserNow__()

toiChatter

- toiChatClient: toiChatClient
- recipient: String

+ startInstantMessage()
+ handleChatMessage(ChatMessage)
+ getRecipient(): String
- sendOneChatMessage(String MSG)

Figure 3.2.17: toiChatServer and toiChatter - UML Sketch

toiChatter

The toiChatter object implements a specific Protobuf message type containing text a client has sent and a

field defining who the message is for. The toiChatter object is capable of detecting who a message is from

displays it tagged with the text message.

toiChatClient

The final core object in the TOIChat application is the toiChatClient. The toiChatClient is a simple class

object that interacts with any application object that desires to send a message. We force the use of sending

messages with the toiChatClient as it appends a header to each message it pushes out. The header contains

vital information of who originally sent the message and stamps the message as a TOIChat specific

message. The stamping of the sent message is parsed by the toiChatServer object and allows for it to

appropriately send the message to the correct message handler.

toiChatClient

- hostname: String
- description: String = ""
- toiChatNameServer: toiChatNameServer = None

- __init__()
+ updateNameServer(toiChatNameServer): Boolean
+ getDescription(): String
+ getName(): String
+ updateName(String): Boolean
+ sendMessage(String, String, int): Boolean
+ createTemplateIdentifierMessage(String): ToiChatMessage

Figure 3.2.18: toiChatClient - UML Sketch

 Broadband-Hamnet Microwave Communication System Page 30 of 53

Senior Design Project II | Final-v05 4/16/2016

3.2.5. TOIChat - Front-End Development

Creating a Command Line Interface - toiChatShell

Once the back end of the chat software is complete, a supporting front-end is needed for user interaction.

Development started with a command line interface (CLI) that brings together all back-end components.

Our CLI starts by prompting the user for call-sign they wish to use when registering themselves onto the

TOIChat network. We also allow for an alternative miscellaneous field that can be used by users to provide

supplemental information such as their GPS location. A prompt for your Broadband-Hamnet’s router

password is necessary to start the RMDP scripts.

A built-in help menu is provided for users new to the program. All expected command line features are

included such as tab auto-complete, proper keyboard interrupt handling, command syntax error handling,

and command history. The toiChatShell extends the standard Python cmd module (Python, 2016).

Figure 3.2.19: toiChatShell - Startup

At this point in the shell startup we still have not started up the TOIChat network interface. To begin the

connection to the TOIChat network we need to start the local toiChatServer instance. Trying to start a chat

before starting your toiChatServer will produce error messages. By default the toiChatServer uses port 5005

to communicate with the TOIChat network. If desired, users can specify the specific port they wish to use

allowing for creating two entirely separate TOIChat network running off different ports all on one

Broadband-Hamnet network.

 Broadband-Hamnet Microwave Communication System Page 31 of 53

Senior Design Project II | Final-v05 4/16/2016

Figure 3.2.20: toiChatShell – Connection to TOIChat Network and Chat Messaging

Running the forceupdatedns function will force a toiChatNameServer sync with the closest client in the

TOIChat network. After which, a user can run the printdns function to print the console the current state of

the TOIChat network.

Now if a user is running the toiChatShell, and a message comes in from a client they will be prompted in

real-time that they have a message from a TOIChat user. It displays the call-sign of the user that attempt to

contact them and a recommendation to start a toiChatter instance for that user. As seen in Figure 3.2.10

KC3GIG attempt to contact us before we started a chat with the user.

Figure 3.2.21: toiChatShell – Chat Environment

 Broadband-Hamnet Microwave Communication System Page 32 of 53

Senior Design Project II | Final-v05 4/16/2016

We can start a chat instance with KC3GIG by issuing the CLI startchat command. The application will

prompt you with available TOIChat users in the active network, which you will be able to communicate

with. Upon opening a chat instance with a user, a special environment opens up that allows you to have

peer-to-peer communications with the selected user. After communication has ended with the user, the

keyboard control sequence CTRL+C will exit you out of the chat environment. A second CTRL+C interrupt

will close the toiChatShell application.

The implementation of TOIChat can be found at our GitHub page referenced in the APPENDIX.

Creating a Graphical User Interface (GUI) - ToiChatGui

An alternative environment is provided for users who prefer a simpler graphical user interface (GUI). Note

the GUI implementation of TOIChat is fully compatible with the toiChatShell as they use the same back-

end resources.

The GUI is created in Python using a third-party module named Gtk. To aid in rapid GUI development, a

program Glade aids in the construction and layout of the application. With Glade, a GUI can be created

graphically with some handy features so that it does not have to be explicitly programmed. Glade generates

an XML file that can be parsed and used with Gtk. With glade and Gtk, buttons and textboxes are referenced

as objects. Gtk has an Application Program Interface (API) that allows the programmer to easily interact

with built in functions. Examples include getting text from an entry box, writing text to a textbox, or

connecting a button click to an event handler.

The GUI was split into several sections: a login screen, a display of available chatters, and a chat window

for every chatter. The login page consists of several text boxes that prompt the user to enter their username,

router’s password, and optional miscellaneous information. A quaternary text box also exists to display

error messages to the user. The user has the option to Quit the program if it was opened by mistake.

Figure 3.2.22. GUI login screen

Once the login button is clicked, the backend of TOIChat operations start. This process can take a few

seconds to complete as the application is actively scanning the network for available TOIChat clients. The

user can visually see the program working with a spinner.

The GUI and backend software must be in separate threads. If it is not run in threads, the GUI will freeze

and not update when the backend software is running. The program will also check if the user did not enter

 Broadband-Hamnet Microwave Communication System Page 33 of 53

Senior Design Project II | Final-v05 4/16/2016

a Username or Password. Informative status messages are written to the error display box. Messages that

could appear here include errors informing the user of the program state. Such errors could be ‘No

Username Entered’, ‘No Password Entered’, or ‘Router’s Password is incorrect’. Informative error

messages are critical for any satisfying user experience.

Figure 3.2.23: Login screen error message

After a successful login, the user is registered with TOIChat network and the login window is closed and a

new window opens displaying a pull down box. The new window can be seen in Figure 3.2.24. Elements

in the window include a dropdown combo-box containing available active clients, a button to start a chat

instance, a button to update the available client listing, and a status display textbox. The initially empty

status textbox will display error messages upon occurrence to the user. Example error messages for this

window include ‘Connection to TOIChat Network Failed. Please try again in a few minutes’ or ‘Nothing

Selected. Select a name to continue’. If the user clicks the update chat list button, the spinner will start and

a new list of names will appear in the drop down box.

Figure 3.2.24: Choose chatter screen

To start a chat with an active client, the user must select a name from the combo-box and click the Start

Chat button. A separate window will appear displaying a large space where the chat is displayed, a textbox

where the user can enter their message, and a button to send a message.

 Broadband-Hamnet Microwave Communication System Page 34 of 53

Senior Design Project II | Final-v05 4/16/2016

Figure 3.2.25: Gui chat window

The user can send a message by entering a string into the textbox and clicking the send message button.

The message the user sent will appear in the display window tagged with the corresponding username

(‘Username : message’). Any received messages will also be displayed inside the window.

Figure 3.2.26: Sending message

The TOIChat software support communication to multiple users at once. The TOIChat GUI’s display

window is capable of scrolling allowing the users to enjoy longer chat sessions. As expected, closing the

chat window will not close the program. However, closing the login window or the choose chatter window

will exit the program.

 Broadband-Hamnet Microwave Communication System Page 35 of 53

Senior Design Project II | Final-v05 4/16/2016

Figure 3.2.27: Multiple chat windows open simultaneously

The GUI was structured as a class called ToiChatGui. This class is instantiated once in the main program

and run in a loop expecting interrupts from the user which can be serviced appropriately. The class has

specifications for chat window structure. This allows for multiple windows to be instantiated and organized

properly in the code. This was implemented with a list of chat window objects.

 Broadband-Hamnet Microwave Communication System Page 36 of 53

Senior Design Project II | Final-v05 4/16/2016

Figure 3.2.28: ToiChat high level software arc0hetecture

Figure 3.2.29: Methods in ToiChatGui and ChatWindow Class

ToiChatGui was also designed using standard UML diagrams. As is seen in the figures above each class

contains class constructors which initializes both the login and select chatters windows. Each class had

corresponding event handlers such as the loginClick function inside ToiChatGui which handles the user

clicking the login button. More specifically, it checks the users’ inputs and calls the startToiChat function,

after which a ChatWindow for the desired client is opened. The startChatClick handles the start chat button

and instantiates a ChatWindow class in a list. The sendMessageClick handles the send message button

which sends a message to other chatter. The sendMessageClick function displays its message on the screen

by calling the displayMessageSent function. The updateDns updates the chat list and the quitClick calls the

destructor cleaning up the program properly.

 Broadband-Hamnet Microwave Communication System Page 37 of 53

Senior Design Project II | Final-v05 4/16/2016

4. EVALUATION

4.1. Test Methods

4.1.1. Simulation

Network Stability and Performance Testing at Various Ranges

The entire setup would be placed on the roof of the engineering building, and the system would be tested

by transmitting to Montgomery County Emergency Center, which is about 25 km from the College of

Engineering at Temple University. Due to administrative constraints, it is impossible to install the system

on the roof. Therefore, we will have to simulate the 25 km path.

It is possible to simulate the 25 km path by dropping the output power of the router, and removing the

amplifier and Yagi antenna from the system. By making use of the path loss and link budget equations in

section 3.1 Hardware Design, it is possible to calculate a distance the transmitter and receiver need to be

separated by to obtained the received power calculated in section 3.1.4 Link Budget. Recall our calculated

received power is:

𝑅𝑥𝑝𝑜𝑤𝑒𝑟 = −75.01𝑑𝐵𝑚

Referencing Equation 3.3 we can find the a simulation distance (R) required that mimics a longer distance

with the desired 𝑅𝑥𝑝𝑜𝑤𝑒𝑟.

𝑅𝑥𝑝𝑜𝑤𝑒𝑟 = 𝑇𝑥𝑝𝑜𝑤𝑒𝑟 − 𝑃𝑎𝑡ℎ𝐿𝑜𝑠𝑠(𝑑𝐵),

Recall from Equation 3.2 Path Loss is:

𝑃𝑎𝑡ℎ𝐿𝑜𝑠𝑠(𝑑𝐵) = 𝐾𝑢 + 20 log(𝑓𝑅) − 𝐺1(𝑑𝐵) − 𝐺2(𝑑𝐵)

The 𝑇𝑥𝑝𝑜𝑤𝑒𝑟will be set to the minimum possible WRT54G power output, which is 1dBm. To solve for the

distance that will effectively simulate the 25km link, the above equations are rearranged as follows,

𝑇𝑥𝑝𝑜𝑤𝑒𝑟 − 𝑅𝑥𝑝𝑜𝑤𝑒𝑟 = 𝑃𝑎𝑡ℎ𝐿𝑜𝑠𝑠(𝑑𝐵),

Substituting appropriate values and solving for simulated distance (R) reveals that separating the routers by

a distance of 62.8 m will simulate a larger distance of 25 km. Again this simulated distance is with power

output of the Linksys WRT54G set to 1dBm, and removing the 2.4GHz amplifier and Yagi-Uda antennas.

1 + 75.01 = 32.45 + 20 log(2400 ∗ 𝑅) − 0 − 0

𝑅 =
102.178

2400
= .0628𝑘𝑚 = 62.8𝑚

We are not limited to testing only the 25 km range. There is interest in obtaining the performance metrics

as a function of distance. We can simulate different distances by keeping the routers 62.8m apart, and

increasing the power output on the routers. Utilizing the same equations above, we test performance at the

simulated distances of 20km, 16km, 10km, and 3.1km with the results tabulated in Table 4.1.1.

Table 4.1.1: Required Power to Simulate Long Distance Communication

 Broadband-Hamnet Microwave Communication System Page 38 of 53

Senior Design Project II | Final-v05 4/16/2016

Distance (km) Tx Power (dBm)

25 1

20 3

16 5

10 9

3.1 19

We will use the Linux utility Data Description (“dd”) along with netcat (“nc”) to test the effective data

rates at each of the aforementioned distances as well as connectivity stability (Linux/Unix, n.d.). The actual

data speed transmission script will be provided in the example directory section referenced by the project

GitHub page seen in the APPENDIX. For quick reference, the Unix command seen below sends 100

packets, each containing 1000 zeros, which is a total of 100kB of data.

$ dd if=/dev/zero b=1k count=100 | nc –vvn $RECEIVEIP $RECIEVEPORT

4.1.2. Hardware

WRT54G Spectrum Test

As the amateur radio band is 2.4 GHz, it is imperative the WRTG54G is transmitting at 2.4 GHz. Testing

the transmission frequency is often done inside a Faraday cage, which keeps the WRTG54’s signal in, and

noise signals, such as Wi-Fi, out. A Faraday cage is an enclosure surrounded by an electrical conductor.

The theory behind the Faraday cage states that an externally applied electric field causes a current on the

conductor of the cage that rearranges the charge carriers in a way that cancels the applied field inside the

cage. Once the field inside the cage is cancelled, the current stops which reduces noise signals inside the

cage (Zakaria, Sudirman, & Jamaluddin, 2008).

For this test, the WRT54G router was flashed with the custom

firmware Broadband-Hamnet_v1.0.0. To test the transmission

frequency, the communication system was set up in a Faraday

cage with the probes of a spectrum analyzer inside the cage. The

Faraday cage is necessary for this test to ensure that the

spectrum analyzer is picking up our signal, as opposed to a stray

Wi-Fi signal. The cage is shown here in Figure 4.1.1. The

communication protocol was executed and the results were

recorded. To test the effectiveness of the Faraday cage, a speed

test was run from an Android device with the spectrum

analyzer’s probes outside the cage, followed by the same test

with the probes inside the cage.

WRT54G Output Power Test

To ensure we will we are actually seeing 19dBm outputting from the router, we hook up the output terminal

of the router to the spectrum analyzer. The spectrum analyzer power measurement tool will allow us to set

a frequency range and reports the power output in dBm. Before performing the test we ensure we have the

router set to output the maximum possible output via the Broadband-Hamnet web portal interface.

Figure 4.1.1: Com Setup inside Faraday

Cage

 Broadband-Hamnet Microwave Communication System Page 39 of 53

Senior Design Project II | Final-v05 4/16/2016

Figure 4.1.2: Broadband-Hamnet Web Portal

4.1.3. Software

Software testing is accomplished by ensuring the application is setup to be easily installed on any RPI2.

Installation instructions are provided on the GitHub homepage. Project dependencies to install the project

are mostly handled by the Python module “SetupTools”, but includes:

 Root privileges on your PI for utilizing raw sockets. ICMP messages are implemented directly

in Python.

 Router scripts router_request_arpinfo.sh, and router_tx_arpinfo.sh need to be preloaded onto

your router.

 Python 3.2 or Greater.

 Google Protocol Buffers 3

 Requires ‘sshpass’ for recurring ssh communications with Broadband-Hamnet router.

 python3-gi installed via the Raspbian Package Manager

 Broadband-Hamnet Microwave Communication System Page 40 of 53

Senior Design Project II | Final-v05 4/16/2016

Figure 4.1.3: GitHub Issue Tracker

Extensive unit testing and bug squashing was done beforehand to ensure program stability. Bugs were

tracked using the GitHub issues tracker seen in Figure 4.1.3. The inclusion of a several verbose output

modes available only when running inside the command line interface (CLI) will save any information,

warning, and error messages to a ToiChat.log file store in the root directory of the application.

4.2. Results

4.2.1. Simulation

Network Stability and Performance Testing at Various Ranges

The range test was performed in the hallway connecting the Science Education and Research Center

(SERC) to the College of Engineering. Figure 4.2.1 and Figure 4.2.2 show the two systems set up with line

of sight.

 Broadband-Hamnet Microwave Communication System Page 41 of 53

Senior Design Project II | Final-v05 4/16/2016

Figure 4.2.1: Performance Test Station 1

Figure 4.2.2: Performance Test Station 2

As predicted in Section 4.1.1, by dropping the power output of the routers to 1dBm, we were able to

simulate a communication link of 25 km, 20 km, 16 km, 10 km, and 3.1 km by separating the routers by an

actual distance of 62.8 m and adjusting the power output on the routers accordingly.

The results in Figure 4.2.3 and Figure 4.2.4 are expected for this experiment. The signal to noise ratio

decreases as a function of distance, which in the case of this experiment directly relates to the output power

of the Linksys WRT54G. The same is true for the effective data rate, which ranges from about 21 Mbps to

6 Mbps. The decrease in data rate directly relates to the signal to noise ratio because the probability of bit

error increases as the signal to noise ratio decreases (Nguyen & Shwedyk, 2009). Therefore, due to the

functionality of TCP, the data rate is reduced due to more frequent retransmissions caused by erroneous

packets.

 Broadband-Hamnet Microwave Communication System Page 42 of 53

Senior Design Project II | Final-v05 4/16/2016

Figure 4.2.3: Effective Data Rate vs Simulated Distance

Figure 4.2.4: SNR vs Simulated Distance

Figure 4.2.3 shows lower data rates than those predicted in Figure 3.1.12. The data rates predicted in Figure

3.1.12 assume error free transmissions, or an infinite signal to noise ratio. In the experiment proposed to

test the data rates in Section 4.1.1, there is not an infinite signal to noise ratio which means errors will occur,

 Broadband-Hamnet Microwave Communication System Page 43 of 53

Senior Design Project II | Final-v05 4/16/2016

and retransmissions cause the data rates to drop. Another reason the actual data rates are lower than the

projected data rates is a technology implemented by the Broadband-Hamnet firmware called carrier sense

multiple access (CSMA). A communication system utilizing CSMA must wait for the channel to be clear

before transmitting data (Popiel). Because the amateur bands that Broadband-Hamnet utilizes for

transmission are the same bands as standard Part 15 wireless devices, the Linksys WRT54G sense WiFi

signals on the channel, making them wait to transmit. This is especially likely because we tested the system

inside the College of Engineering, a place where there a multiple access points throughout the building.

4.2.2. Hardware

WRT54G Spectrum Test

For our spectrum test we found that indeed our router was operating in the expected 2.4 GHz range. The

spectrum analyzer picked up a lot of activity when the Faraday cage was open, and picked up a mere fraction

of that signal with the cage closed. These results are shown in Figure 4.2.5 and Figure 4.2.6.

Figure 4.2.5: Speed Test, Cage Open

Figure 4.2.6: Speed Test, Cage Closed

Because it is evident that the Faraday cage would block stray signals, the transmission frequency of the

router could be properly tested. The transmission frequency was in the 2.4 GHz band and the spectrum

analyzer seen in Figure 4.2.7 depicts this.

Figure 4.2.7: Transmission Frequency

WRT54G Output Power Test

For the spectrum test we used an antenna to pick up the 2.4 GHz signal put out by our router. For the power

test we needed a direction connection to our router so we picked up an adapter cable to take power straight

from the RF terminal of the router to the spectrum analyzer. Thus, what we are measuring is the full output

power of the router.

 Broadband-Hamnet Microwave Communication System Page 44 of 53

Senior Design Project II | Final-v05 4/16/2016

According to the IEEE 802.11g standard we know the bandwidth of our signal to be ~20MHz (or exactly

22MHz). Also the standard for IEEE 802.11 states that on the 2.4GHz spectrum a channel setting of one

within the router firmware is equal to an actual transmission frequency of 2.412GHz (see Figure 4.2.8). The

Broadband-Hamnet web console allows us to set these settings. We set our router output channel one with

max power (19dBm) with both Tx/Rx (transmit and receive) on the left output terminal (see Figure 4.2.9).

The Tx/Rx on one terminal setting is explained since our YAGI antenna will interface with the router via a

signal RF interconnect.

Figure 4.2.8: IEEE 802.11 2.4GHz channel spacing

Figure 4.2.9: Broadband-Hamnet Web Portal – Configuration Settings

We found the max output power of the router over a 30 second observation time to be equal to ~15dBm.

 Broadband-Hamnet Microwave Communication System Page 45 of 53

Senior Design Project II | Final-v05 4/16/2016

Figure 4.2.10: Power of WRT54G (Frequency Range: 2.22GHz→2.62Ghz)

4.2.3. Software

TOIChat Application Debugging

To analyze the performance of the actual TOIChat application we put the program in verbose mode.

Verbose mode at this time is only available via the command line interface (CLI) and is set by passing a

number of “-vv” flags when starting the application. The more v’s provide the more verbosity output by the

application. By default, a log file is maintained that only stores error message produced by the application.

Providing one (“–v”) flag will display information messages such as “Server start was successful” and

“Adding <callsign> to DNS table”. Providing two (“–vv”) flags will put the program in full debug mode,

allowing for monitoring of background threaded processes such as continuous pinging, and monitoring of

all received serialized and decoded messages.

 Broadband-Hamnet Microwave Communication System Page 46 of 53

Senior Design Project II | Final-v05 4/16/2016

Figure 4.2.11: TOIChat.log - TOIChatShell.py Startup

An example of the debug functionality upon program start of TOIChatShell.py can be seen in Figure 4.2.11.

As is demonstrated by the log, we can see the class object instantiation is for the toiChatNameServer class.

Once the class object is created the program adds the local user to the internal NameServer or IPv4 client

database.

An example of the debug functionality upon program start of TOIChatShell can be seen in Figure 4.2.11.

As is demonstrated by the log, we can see the class object instantiation is for the toiChatNameServer class.

Once the class object is created the program adds the local user to the internal NameServer or IPv4 client

database.

After creating the name server object, a user will most likely start the server listener. Doing so spawns two

server threads: a ServerListener and a MessageProcessor. If both threads spawn successfully no error is

thrown and the program continues to run. If another instance of the toiChatShell or ToiChatGUI is already

running, an error may occur. If this error occurs, then the server listener thread will raise a socket exception.

The error indicates to the user that the program can not bind to the default server port of 5005 because the

port is being used by another application.

At this point the application and background processes are running, namely, the background pinging service

found inside the toiChatNameServer. The toiChatNameServer keeps track of the average ping time to each

client registered in the Nameserver. It even pings the local host to ensure network connectivity is

maintained. If for some reason the ping to the local host fails, the application detects the error and prompts

the user that their network connectivity is unstable or disconnected. If there is network loss, the

toiChatNameServer is smart enough to not delete any non-responsive clients in the network. In doing so, it

maintains an up to date database of clients in the network once network connectivity is re-established.

 Broadband-Hamnet Microwave Communication System Page 47 of 53

Senior Design Project II | Final-v05 4/16/2016

Figure 4.2.12: TOIChat.log – New Client Connect

When a new client connects (KC3GIH) to the TOIChat network, we can see the exact process taken by the

application. First, we see a new client connecting from the toiChatServer ServerListener thread. The server

hands the connection to the new client referenced by an open socket to the MessageProcessor thread. Recall

from 3.2.2 Theory of Socket Programming section that communication between threads is handled by

putting the item into a queue data structure. A perfect demonstration of this functionality is seen here when

our ServerListener thread puts the socket connected to the new client on an internal class queue which is

monitored by the MessageProcessor thread. It allows for the ServerListener thread to continue listening for

new client connections while messages are being decoded, and processed in a separate thread.

The MessageProcessor takes the new client socket and begins receiving data from the client. We can see

from Figure 4.2.11 both the RAW Google Protobuf encoded serialized version of the message and the

decoded version of the message. When a new client connects to the network it pushes a toiChatNameServer

bound “request” message. A “request” message is the new client telling the existing client that it is just

connecting to the network and needs to pull a database of known devices from this pre-existing client. The

local client detects the message successfully and passes the message to the toiChatNameServer class for

handling. The toiChatNameServer message handler is capable of detecting the message type and responding

with the appropriate requested information. It uses the toiChatClient to open a new socket to the connected

client’s toiChatServer class for responding to the message it sent before.

 Broadband-Hamnet Microwave Communication System Page 48 of 53

Senior Design Project II | Final-v05 4/16/2016

Figure 4.2.13: TOIChat.log – Database Synchronization

The next sequence of communication links between the local client and the newly connected client show

how the database is synced between the two toiChatNameServer objects. From the previous “request”

message received, our local client responds with a “register” message containing a listing of all known

clients in the network. The “register” message contains the entire database of known clients and status of

TOIChat network. The new client responds with its own “register” message shown in Figure 4.2.13. The

process is ever-looping until both sides have agreed that the two databases are identical. Any conflicting

discrepancies are handled by the toiChatNameServer which uses the information from the client to

determine which side has the most up to date version of the database by checking the “dateAdded” field.

 Broadband-Hamnet Microwave Communication System Page 49 of 53

Senior Design Project II | Final-v05 4/16/2016

Figure 4.2.14: TOIChat.log – Chat Messages

Inspection of the application while chat messaging is occurring is seen in Figure 4.2.12. Chat messaging is

handled by the toiChatter object and accepts messages ProtoBuf ChatMesage type. In Figure 4.2.12, we see

KC3GIH sending recipient KC3GIF (the local client) a message containing the string “cool”.

Another interesting aspect to note in Figure 4.2.12 is while chat messages are exchanged between clients,

concurrently running inside the toiChatNameServer pinging thread in monitoring the state of the TOIChat

network. Finally a failed ping and removing of lost node shown in Figure 4.2.15. At this point any future

references in the TOIChat network to the disconnected KC3GIH client are removed.

 Broadband-Hamnet Microwave Communication System Page 50 of 53

Senior Design Project II | Final-v05 4/16/2016

Figure 4.2.15: TOIChat.log – Failed Ping and Node Removal

5. SUMMARY AND FUTURE WORK

The Broadband-Hamnet Microwave Communication System met the design requirements for both

hardware and software. This project was successful in utilizing inexpensive, COTS hardware such as the

Raspberry pi and the Linksys WRT54G. The long distance communications were never set up due to not

being able to not find an appropriate suitor to maintain the receiving end. This project therefore sets up the

basis and shows the capabilities of a theoretical communication apparatus. We showed comparable

communication distances and their speeds which classifies as a high-speed network. These calculations

could not be fully tested but instead were simulated successfully. The hardware successfully supported a

mesh network topology and full duplex communication. For software, achieving project success entailed

developing an application that provides peer-to-peer communications for users utilizing a mesh network

topology for a reliable Amateur Radio Network. A protocol, RMDP, was developed to facilitate the initial

peer-to-peer communication setup and a new communication protocol ensures that each node of the

TOIChat network is capable receiving multiple unique messages. Further, the software is designed to handle

multiple types of requests from any other machine in the mesh network. These requests include

adding/removing new TOIChat nodes, syncing of a large amounts of data across the mesh network, and

initiating chat services. Furthermore, TOIChat’s unique feature is able to automatically discover devices on

the LAN of each node. Each machine successfully keeps a self-updating database of active machines and

their associated IPv4 addresses.

Any team that decides to continue this project may should consider as possible contributions to the work

already done. The current TOIChat software is limited to peer-to-peer communications. An improvement

would be to broaden the functionality to support one-to-many or group chat rooms. The addition of one-to-

many communication is feasible based on the software already in place; one would have to either implement

a connection-less protocol and dedicate a range of ports to group chatting, or keep track of a list of socket

objects that are involved in the group chat.

Future development could also implement a live streaming service for users on the network using a

 Broadband-Hamnet Microwave Communication System Page 51 of 53

Senior Design Project II | Final-v05 4/16/2016

PiCamera or some attached USB camera. Video streaming is a feasible task based off of the infrastructure

already in place. The streaming service could effortlessly support high-definition video, as the data rate of

1080p video is 8Mbps, and we have reported data rates well above this standard (YouTube, n.d.).

The third area for improvement is improving the data rate of the system. It is possible to accomplish faster

data rates by fully converting to a connection-less based protocol such as UDP. Implementing UDP would

increase the data rate because of less overhead in the transport protocol header. A team pursuing this

direction would then have to incorporate acknowledgement functionality and error detection/correction

coding themselves. We would encourage anyone pursuing this direction to consult Stallings’s Data and

Computer Communications textbook which contains in depth analysis on cyclic codes, linear block codes

(LBCs) and various other implementations of error detection and correction.

The final area for improvement would be to improve the hardware used in this project. While the Linksys

WRT54Gs are good routers, there are currently more powerful routers on the market capable of running

similar firmware to Broadband-Hamnet. The AREDN firmware is a continuation of Broadband-Hamnet

and is compatible with Ubiquiti wireless routers (Popiel). The Ubiquiti routers have more flash memory,

higher output power ratings, and are weather resistant. The weather resistance is a major improvement over

the Linksys WRT54G due to the fact that it simplifies the overall design of the system by eliminating long

coaxial runs from the router to amplifiers and antennas. In a future release, AREDN also plans to support

communication in the 0,-1, and -2 channels in the 2.4GHz band (Popiel). Support on these channels would

inherently increase data rates because the operation of the mesh network would be separate from standard

WiFi signals.

6. ACKNOWLEDGEMENTS

Thanks to Dennis Silage, PhD, our project advisor for taking on the project. Also thanks to Temple

University’s System Chip Design Laboratory (SCDL) and Amateur Radio Station (K3TU) for providing us

with hardware and space to conduct our experiments.

Special appreciation is in order for Dr. Biswas who gave our team a place to work after unforeseen

circumstances removed us from the SCDL.

Note the TOIChat project contains a reference to GitHub Project: “python-ping” which is distributed under

the GNU General Public License (GPL) License.

7. REFERENCES

Cerf, V. G., & Khan, R. E. (1974). A Protocol for Packet Network Intercommunication. IEEE Transactions

on Communications.

Coaxial Cable Attenuation Charts . (n.d.). Retrieved from rfelektronik:

http://rfelektronik.se/manuals/Datasheets/Coaxial_Cable_Attenuation_Chart.pdf

Epaminondas, F. (2016). COMPAL Electronics / Embedded Lab (UFCG). Retrieved from Protocol Buffers

Overview.

HRS. (2016). Retrieved from Ham Radio School: http://www.hamradioschool.com

Linux/Unix. (n.d.). arp(8) - Linux man page. Retrieved from linux.die.net: http://linux.die.net/man/8/arp

Linux/Unix. (n.d.). dd(1)-Linux Man Page. Retrieved from linux.die.net: http://linux.die.net/man/1/dd

 Broadband-Hamnet Microwave Communication System Page 52 of 53

Senior Design Project II | Final-v05 4/16/2016

Linux/Unix. (n.d.). nc(1) - Linux man page. Retrieved from linux.die.net: http://linux.die.net/man/1/nc

Linux/Unix. (n.d.). ping(8) - Linux man page. Retrieved from linux.die.net: http://linux.die.net/man/8/ping

Mathis, M. (1996, 10). TCP Selective Acknowledgment Options. Retrieved 1 6, 2016, from ietf.org:

https://tools.ietf.org/html/rfc2018

Milligan, T. A. (2005). Modern Antenna Design (Vol. 2). Hoboken, New Jersey, USA: John Wiley & Sons,

Inc.

MILLIGAN, T. A. (2005). MODERN ANTENNA DESIGN. John Wiley & Sons, Inc.

Nguyen, H. H., & Shwedyk, E. (2009). A First Course in Digital Communications. Cambridge, NY, US:

Cambridge University Press.

Popiel, G. (n.d.). High Speed Multimedia for Amateur Radio. USA: The American Radio League, Inc.

Python. (2016, February 07). The Python Language Reference. Retrieved from Python:

https://docs.python.org/3.5/reference/

Sathananthan, K., & Tellambura, C. (2001, 11). Probability of Error Calculation of OFDM Systems With

Frequency Offset. 1884 IEEE Transactions on Communications, 49(11).

Socket - Linux socket interface. (2015, February 07). Retrieved from Die: http://linux.die.net/man/7/socket

Stallings, W. (2014). Data and Computer Communications - 10th Edition. Upper Saddle River: Pearson

Education Inc.

Systems, T. M. (n.d.). LMR-600 Flexible Low Loss Communications Coax.

Touch, J. (2016, 04 14). Service Name and Transport Protocol Port Number Registry . Retrieved February

12, 2016, from iana.org: http://www.iana.org/assignments/service-names-port-numbers/service-

names-port-numbers.xhtml

YouTube. (n.d.). Recommended Upload Encoding Settings. Retrieved from YouTube:

https://support.google.com/youtube/answer/1722171?hl=en

Zakaria, N. A., Sudirman, R., & Jamaluddin, M. N. (2008, Dec). Electromagnetic Interference Effect from

Power Line Noise in Electrocardiograph Signal using Faraday Cage. Power and Energy Confernce,

IEEE 2nd International, 666-671.

Zograf, B. (n.d.). Threaded Code. Retrieved from Institute of Computer Languages Programming Research:

http://www.complang.tuwien.ac.at/forth/threaded-code.html

 Broadband-Hamnet Microwave Communication System Page 53 of 53

Senior Design Project II | Final-v05 4/16/2016

APPENDIX A – Project Site and GitHub Source Code

For further project information we encourage you to check out our project and GitHub site:

 Official Project Site -- https://sites.google.com/a/temple.edu/broadband-mcomm/

 Official Project GitHub -- https://github.com/TOI-Group

Our GitHub contains example code for getting started with half-duplex, and full-duplex socket

programming. It also contains our most recent release of the TOIChat application. Instructions for setting

up and installing the software yourself are provided via the GitHub README. Lastly, the GitHub contains

MATLAB code that uses the equations throughout this paper to simulate and produce the theoretical results

proposed by this paper.

APPENDIX B – Project Contact

Any further questions or concerns should be directed towards team lead Devin Trejo (email:

devin.trejo@temple.edu).

https://sites.google.com/a/temple.edu/broadband-mcomm/
https://github.com/TOI-Group

	1. PROBLEM STATEMENT
	1.1. Overall Objectives
	1.2. Historical and Economic Perspective
	1.3. Design Concept
	1.3.1. Hardware
	1.3.2. Software

	1.4. Major Design and Implementation Challenges
	1.4.1. Hardware
	1.4.2. Software

	1.5. Implications of Project Success

	2. DESIGN REQUIREMENTS
	2.1.1. Hardware
	2.1.2. Software

	3. APPROACH
	3.1. Hardware Design
	3.1.1. Long Length Coaxial Cable Performance
	3.1.2. Power Amplification
	3.1.3. Path loss
	3.1.4. Link Budget
	3.1.5. Powering the Amplifier
	3.1.6. Theory of Yagi-Uda Antenna Design

	3.2. Software Design
	3.2.1. Theory of TCP/IP Networking Stack
	3.2.2. Theory of Socket Programming
	3.2.3. Creating the Remote Machine Discovery Protocol (RMDP)
	3.2.4. TOIChat – Backend Development
	3.2.5. TOIChat - Front-End Development

	4. EVALUATION
	4.1. Test Methods
	4.1.1. Simulation
	4.1.2. Hardware
	4.1.3. Software

	4.2. Results
	4.2.1. Simulation
	4.2.2. Hardware
	4.2.3. Software

	5. SUMMARY AND FUTURE WORK
	6. ACKNOWLEDGEMENTS
	7. References
	APPENDIX A – Project Site and GitHub Source Code
	APPENDIX B – Project Contact

