Two Dimension Parity Check for Error Detection
Devin Trejo
devin.trejo@temple.edu

Date: 3/11/2016

[. Summary

Lab 3 introduces two-dimensional parity error checking for an original 30 byte
transmission between a client computer and a PIC32 server. The two-dimensional
parity checking code allows us to encode our original message with redundant bits
to detect errors in a received message. The original message is arranged in a grid
and the parity bit is calculated across the rows and down the columns. Our original
30 byte string increases in size to a 35 byte string that contains the parity
information. We demonstrate that our two-dimensional decoder is capable of
detecting and correcting one bit errors from the client received message.

[. Introduction

Two-dimensional parity checkers are capable of correcting errors up to one bit in
a received encoded message. To construct our encoded message we lay our
information into a two dimensional gird. We ensure that the bits across our rows
and down the column of our message bit stream contain an even number of bits.

Row
parity

1 r O 1 1 1 0
O 1 1 1 0
O 1 0 0 0
0O 1 0 1 1
b; ° e bij i 0O 0 0 1 110

hl.l * e @ b

1,32.1 e e @ bz.j &)

Column
parity

cq ¢ s G P Figure 2: Even-Parity Encoded Message [1, p.
192]
Figure 1: Parity Calculation [1, p. 192]

If a single error is introduced by our transmission medium we can correct it by
detecting what column the errors is contained in, then cross reference that
column with a row that also does not contain even parity. We now have the row
and column of the infringing bit and flip it to maintain the even encoding scheme.
After we have correct the errors we can flatten and retrieve the original message
from the encoded message.

There are limitations to the two-dimensional error correction. We say that at best
we can correct up to one error in our received message. We can correct a higher
number of bits as long as the errors do no occur in the same row and column
within our encoded message; creating a square. If they do occur in this shape
then it is not possible to detect these errors and thus we cannot correct them.

0 1 1 1 0\l : O 1 1 1 1 1 0l

0 1 1 ol Row parity

0@0001‘3"‘“" o@1 1 o@1lo

001 100 1]1

O 1 01 1]l 0o 0 0()ofo

0O 00 1 1]0 I o1 1 1 1 1]0

Column I 1.0 0 0 1 1]0

~parity error _ Figure 4: Undetectable Even-Parity Encoded Error [1,
Figure 3: Correctable Even-Parity Error [1, p. p. 192]

192]

[I. Discussion

2D Even Parity Implementation
The string 30 byte string | chose to encode using the even parity encoder is stored
into myStr.

Char *mystr="Devin Trejo test string for EE";

Next we pass the string into our “evenparityencoder()” Which will take our 30 byte input
string and encode it into a transmit buffer of length 35 bytes. The extra 5 bytes are
the parity bits for our 30 byte string.

Our encoder works by breaking our input string into 5 byte chunks. Since our string
consists of the standard ASCII characters, our input chars MSB will always be
zero. To take advantage of all bits in the sent message we will encode a parity bit
into our input chars. To do so we shift our input chars left one bit. We now check
our char for even bit parity. If the shifted char has an even number of bits we leave
the shifted LSB as zero. If the shifted char has an odd number of bits we make it
even by ORing 0x01 with our shifted char. The parity bits are highlighted in yellow
below.

Table 1: Char Even Row Parity Calculation (First 5 Bytes)

ASCII ASCII BINARY (No Shift) ASCII BINARY (Shifted & Parity)
D 0o 1.0 O O 1 0 O 1 0 0 0 1 0 0

e o 1 1 0 O 1 o0 1 1 1 0 0 1 0 1

v o|1 11, 0|1 |1|0 1 1 1 0 1 1 0

i o 1 1 0 1 0 0 1 1 1 0 1 0 0 1

n 0|11 /0 1|1 |1|0 1 1 0 1 1 1 0
(“SPACE”) 0o 0o 1 0o o0/ 0 o0 O 0 1 0 0 0 0 0

After finding the parity bit for each shifted char we now need to find the row even
parity bit. The row even parity bit is calculated by looking at our 5 byte chunk of
shifted chars and computing even parity down the columns. The Even Column

== O = OO

Parity for our first 5 bytes is shown below and the corresponding code for this
process can be seen in Code Snippet 2.

Table 2: Even Column Parity Calculation

ASCII ASCII BINARY (Shifted & Parity) ASCII Hex (Shifted & Parity)

D 1 0 0 01 O 0 O 0x88

e 11 0 0 1 O 1 O Oxca

v 1 1 1 0 1 1 0 1 Oxed

i 11 0 1 0 O 1 O 0xd2

n 1 1 0 1 1 1 0 1 Oxdd
(“SPACE”) 0O 1. 0 0 0 0 0 1 0x41
Even ColumnParity 1 1 1 0 0 0 0 1 Oxel

We repeat this process for the rest of the 25 bytes in our input string. Our resulting
encoded transmit buffer for our original string becomes:

Table 3: 2D Even Parity Encoded Transmit Buffer

Group 7 Byte Group

1 88 caedd2dd4lel
a9ed cadd dedlcc
e8cae7e841e78b
e8e4 d2 dd cf41 8d
ccde e4 41 8b 8b b7

v b WN

We also created a corresponding “evenparitypecoder()”. The decoder reverses the
steps of the encoder by first looking at the parity down the columns of our 7 byte
groups. Any column that has even parity we conclude to be correct. If all columns
have even parity we can check our next group. If one column does not have even
parity we loop back across the chars in our group (excluding the even column
parity char) to look for the char that does not have even parity. When we find the
infringing row we now know the row and column of the problem bit. We flip the
incorrect bit by XORing it with 0x01.

2D Even Parity Demonstration - Wireshark Analysis

To test our implementation we use the provided Visual Basic application which will
receive the transmit buffer, insert a random error in the payload, and send it back
to our PIC32 server.

(3 ECE4532 Client2 v16 B - O X

Server [P [192168.2.105 Port IBEES Connect |
Client IF [13z188.2102
Close |

- Control
Reset | [Transfer Transmit |
-Status———— Bytes—— ~
Transfer I 35

T e

Figure 5: Visual Basic Even Parity Application

We also use Wireshark to analyze the payload as it is sent between the client
and server. To begin we simply want to ensure our server is sending the correct
encoded message to our client.

M “Ethernet - [} X
Eile Edit Wiew Go Capture Analyze Statistics Telephony Wireless Tools Help
Am i@ IBRBRes=Ta=Eaaamn
[Tt [X] ~ | Expression... = +
No. Time Time Source Destination Protocol Length Info
7 22.. @... 192.168.2.182 192.168.2.185 TP 54 43755 + 6653 [ACK] Seq=1 Ack=1 Win=64248 Len=@
9 22. @... 192.168.2.102 192.168.2.185 TCP 57 [TCP segment of a reassembled PDU]
18 22.. @... 192.168.2.185 192.168.2.182 TP 6@ 6653 + 43755 [ACK] Seq=1 Ack=4 Win=512 Len=8
11 22. @... 192.168.2.102 192.168.2.185 TCP 57 [TCP segment of a reassembled PDU]
12 22.. @... 192.168.2.185 192.168.2.182 TP 6@ 6653 + 43755 [ACK] Seq=1 Ack=7 Win=512 Len=8
13 22.. @... 192.168.2.105 192.168.2.182 TCP 89 [TCP segment of a reassembled PDU]
14 22.. @... 192.168.2.102 192.168.2.185 TCP 54 43755 + 6653 [ACK] Seq=7 Ack=36 Win=54285 Len=8
[Stream index: @] A || e 94 de 8@ 6c 23 88 @@ 84 a3 @0 00 B2 B3 @0 45 00
[TCP Segment Len: 35] 001 @@ 4b @0 62 20 @@ 64 @6 d@ 2b c@ a8 82 69 @ ad
Sequence number: 1 (relative sequence numbe.. 0020 82 66 19 fd aa eb @0 Bf 42 46 bd ac 1d 8e 50 18
[Next sequence number: 36 (relative sequenc N zil il il 5
e o o B (SYT 15 de 41 cc e8 ca e7 e8 8b €3 e4 d2
Acknowledgment number: 7 (relative ack numb.. pRna | i o e oa a1 Eb sb
Header Length: 28 bytes
> Flags: @x@18 (PSH, ACK)
Window size value: 512
[Calculated window size: 512]
[Hindow size scaling factor: -2 (no window sca.
> Checksum: @x7e3l [validaticn disabled]
Urgent pointer: @
» [SEQ/ACK analysis]
TCP segment data (35 bytes) v
() 7 Adate segment used in reassembly of a lower Jevel protocel (tcp.segment_data), 35 bytes || Packets: 18 - Displayed: 11 (61.1%) || Profile: Default

Figure 6: Wireshark Encoded Payload Analysis

We first see the three-way TCP handshake between client and server as
connection is establish. To ensure our PIC32 board is setup correctly we use the
VB application to RESET the server. Next we TRANSFER our transmitbuffer to
our client. Analyzing the payload we can see the correct encoded message is
being sent when compared to the computed expected encoded message shown
in Table 3.

Next, we can TRANSMIT a message (with possible errors) back to our server and
use the 2D even parity checks to look for errors. If an error is detected we set the
PIC32’s LED1 (red LED) high. We will look at the Wireshark payload of three
cases.

1. No Error
2. Error in Original String
3. Error in Parity Location

Case 1 - No Error

The control case is where there are no errors introduced by the VB client. For this
scenario, the even parity decoder should not flip any bits since the message was
never corrupted. When the VB application transmits a message back to the server
with no errors it has a status of “Transmit/No Error”.

B3 ECE4532 Client2 v16 B - O x

Server [P [192.168.2.105 Port |6653 Conhect
Client 1P [192168.2.102
Cloge

Control

Feset | Transfer | Transmit |

Bytes P
3b :f_j
i
0
A
W

Figure 7: VB Application when Transmit Enters no Error

Using Wireshark we can see the message our VB client sends across the socket
when no errors are introduced.

M “Ethemet

Eile Edit Wiew Ge (Capture Analyze Statistics Telephony Wireless Tools Help

a4 m i@ Re=EfisEaQanE

(I [t [X] ~| Expression... +
MNo. Time Time Source Destination Protocol Length Info

122. @.. 192.1638.2.182 192.168.2.185 TCP 89 [TCP segment of a reassembled PDU]

2 22.. @... 192.168.2.105 192.168.2.182 TCP 6@ 6653 = 43755 [ACK] Seq=1 Ack=36 Win=512 Len=0

3 22.. @.. 192.168.2.185 192.168.2.182 TCP 89 [TCP segment of a reassembled PDU]

4 22.. @... 192.168.2.102 192.168.2.185 TCP 54 43755 = 6653 [ACK] 5eq=36 Ack=36 Win=64@3@ Len=0

[Stream index: 8]
[TCP Segment Len: 35]

[Next sequence number: 36
Acknowledgment number: 1
Header Length: 2@ bytes
Flags: 8x@18 (PSH, ACK)
Window size value: 64865

Urgent pointer: 8
[SEQ/ACK analysis]
TCP segment data (35 bytes)

[Calculated window size: 64865]
[Window size scaling factor: -1 (unknown)]
Checksum: @x865d [validation disabled]

Sequence number: 1 (relative sequence numbe..
(relative sequenc..
(relative ack numb..

v

JOCC 0@ B4 a3 @@ 00 82 94 de

ea3e
(::LI:Nlld1 de 41 cc eB ca e7 eB

0858

@@ 4b 2e 3a @0 8@ 3@ @6
92 69 aa eb 19 fd bd ac
fa 41 86 5d ¢o 60 H:N=

41 8d cc de ed 41 8b 8b b

88 BC 23 33 83 80 45 20
B8 @88 c@ a8 B2 66 c@ ad
26 b3 @@ of 43 b3 50 18
ed d2 dd 41 el ad e4 cg
41 e7 8b e8 e4 d2 dd ¢

O 7 Adata segment used in reassembly of a lower-evel protocol (tcp.segment_data), 35 bytes

Packets: 6 - Displayed: 4 (66.7%)

Profile; Default

Figure 8: Client Transmission to Server with No Error

If we compare the payload of this message to our original transmitted message

shown in Table 3 we see there are no errors introduced.

For this lab demonstration we have coded our server to echo back a corrected
version of the message received from the client after is has been processed by
our even parity decoder function. To make sure our decoder does not introduce
any unintended bit flips when a message is sent without error we analyze this

echoed message the server sends back to the client.

M “Ethemet - m} b4
Eile Edit Wiew Ge (Capture Analyze Statistics Telephony Wireless Tools Help
A0 [DRBA-=>=T o= EQQan
(I [t [X] ~| Expression... +
MNo. Time Time Source Destination Protocel Lengtt Info
122. @... 192.168.2.182 192.168.2.185 TCP 89 [TCP segment of a reassembled PDU]
2 22. @.. 192.168.2.185 192.168.2.102 TCP 6@ 6653 + 43755 [ACK] Seq=1 Ack=36 Win=512 Len=0
3 22.. @... 192.168.2.185 192.168.2.182 TCP 89 [TCP segment of a reassembled PDU]
4 22, @.. 192.168.2.182 192.168.2.105 TCP 54 43755 + 6653 [ACK] 5eq=36 Ack=36 Win=6483@ Len=@
[Stream index: @] -~ 94 de 88 6c 23 33 @0 @4 33 22 @0 02 93 8@ 45 00 PP E E.
[TCP Segment Len: 35] @@ 4b 82 18 08 8@ 64 @6 ce 75 c@ aB B2 69 c@ ad LK.
Sequence number: 1 (relative sequence numbe.. 92 66 19 fd aa eb @@ @f 48 b3 bd ac 20 db 5@ 13
[Next sequence number: 36 (relative sequenc.. 02 06 73 £7 00 00 L il 6 il &
K led ber: 1ati K d4 de 41 cc e8 ca e7 e8 8b e8 e4 d2
Acknowledgment number: 36 (relative ack num. 41 8d cc de ed 41 8b 8b
Header Length: 2@ bytes
Flags: 8x@18 (PSH, ACK)
Window size value: 512
[Calculated window size: 512]
[Window size scaling factor: -1 (unknown)]
Checksum: @x73f7 [validation disabled]
Urgent pointer: @
[SEQ/ACK analysis]
TCP segment data (35 bytes) v
O 7 Adata segment used in reassembly of a lower-evel protocol (tcp.segment_data), 35 bytes || Packets: 6 - Displayed: 4 (66.7%) H Profile: Default

Figure 9: Server Transmission echoed back to Client

The echoed message from our PIC32 server demonstrates that no bit flips were
introduced in this transmission since there were no errors. The control
experiment where no errors are introduced is proven to work.

Case 2 - Error in Original String
When the VB application transmits a message back to the server with an error it
has a status of “Transmit/Error”.

53 ECE4532 Client2 v16 B - O X

Server [P [192168.2.105 Port 6653 Connect
Client IF [13z188.2102
Close

Control

Reset | Transfer |

Status Bytes ~

Transmit/Error 36

T e

Figure 10: VB Application when Transmit Enters an Error

We can look at the received message from the client:

M “Ethemet - [m] X
File Edit View Go Capture Anshze Ststistics Telephony Wireless Tools Help
AN:® RRERes==EZFTLIIEQaQaE
([[t = | Expression +
MNa. Time Time Source Destination Protocol Lengtt Info
122. 0@... 192.168.2.102 192.168.2.105 TCP 89 [TCP segment of a reassembled PDU]
222. 8. 192.168.2.185 192.168.2.182 TCP 68 6653 » 43755 [ACK] Seq=1 Ack=36 Win=512 Len=0
3 22. 0@... 192.168.2.185 192.168.2.102 TCP 89 [TCP segment of a reassembled PDU]
4 22. @.. 192.168.2.182 192.168.2.185 TCP 54 43755 + 6653 [ACK] Seq=36 Ack=36 Win=6410@ Len=@
Frame 1: 89 bytes on wire (712 bits), 89 bytes ca.. 4 @0 B4 a3 @@ 00 B2 94 de 8@ 6c 23 BB @8 B8 45 00
Ethernet II, Src: Giga-Byt 6c:23:88 (94:de:B@:6c:.. 216 @@ 4b 27 d3 @@ B0 50 @6 @@ 80 @ a8 82 66 c@ as
Internet Protocol Version 4, Src: 192.168.2.182, .. 4 :2 :3 :Z ;g ég ;g :g ac 12 3; :: ﬂ— ‘f 3; 53 18
v o ission Control Protocol, Src Port: 43755 (4. = ca = £Ladedca
Tapsalsston contno. Protoce, arc Mo ¢ £48 d4 de 41 g e8 ca 7 e8 41 e7 8b e8 ed d2 dd cf
Source Port: 43755 e 41 8d cc@etl 41 8b 8 b7
Destination Port: 6653
[Stream index: 8]
[TCP Segment Len: 35]
Sequence number: 1 (relative sequence numbe..
[Next sequence number: 36 (relative sequenc.
Acknowledgment number: 1 (relative ack numb..
Header Length: 28 bytes
Flags: 8xB18 (PSH, ACK)
Window size value: 64135 =
@ 7 wireshark_pcapng_D5844055-6990-44FD-89AF-990237B6FCA_20160311222921_a06272 Packets: 6 - Displayed: 4 (66, 7%) Profile: Default

Figure 11: Client Transmission to Server with Error

The error is in the fifth group and is the third character. Compare the errored
payload with the original transmitted payload (seen in Table 3) and we see Oxde
was switched to Oxdc.

10

Table 4: 2D Even Parity Encoded Receive Buffer (With Error Highlighted)

Group 7 Byte Group

1 88 caedd2dd4lel
a9e4 cadd dedlcc
e8 cae7e841e78b
e8ed d2 ddcf418d
ccdced 41 8b 8b b7

v WN

We now look at the corrected echoed message server sends back to client and
see the Oxdc was corrected back to Oxde. The error was clearly detected since we
coded our PIC32 red led (LED1) to go high when an error was detected.

M Ethemet - a X
File Edit View Go Capture Analyze Statisticc Telephony Wireless Tools Help
aAm:s® Re2=Ef 83 EAQaE
(1 [tep [X] - | Expression +
Mo, Time Time Source Destination Protocal Length Info
122, @.. 192.168.2.182 192.168.2.105 TCP 89 [TCP segment of a reassembled PDU]
2 22.. @... 192.168.2.185 192.168.2.182 TCP 68 6653 » 43755 [ACK] Seq=1 Ack=36 Win=512 Len=8
3 22. @.. 192.168.2.185 192.168.2.102 TCP 89 [TCP segment of a reassembled PDU]
4 22.. @... 192.168.2.182 192.168.2.185 TcP 54 43755 + 6653 [ACK] Seq=36 Ack=36 Win=6418@ Len=8
Source Port: 6653 A 94 de 88 6c 23 33 @@ @4 a3 8@ @0 02 B3 B8 45 00 O . E.
Destination Port: 43755 17 90 4b 80 79 00 BB 64 @6 dP 14 cP 38 ©2 69 c@ aB i
[Stream index: 8] @2 66 19 fd aa eb @@ @f 42 af bd ac 1d 77 5@ 18
[TCP Segment Len: 35] 3 92 @@ 7d 5T @@ 8@ 88 ca ed d2 dd 41 el a9 e4 ca -}
em : . 042 d4 de 41 cc e8 ca e7 e8 41 e7 Bb e8 e4 d2 dd cf Bl - .
Sequence number: 1 (relative sequence numbe.. se 41 8d ((EE4 41 8b 8b b7 A A .
[Next sequence number: 36 (relative sequenc.
Acknowledgment number: 36 (relative ack num..
Header Length: 28 bytes
Flags: @x18 (PSH, ACK)
Window size value: 512
[Calculated window size: 512]
[Window size scaling factor: -1 (unknown)]
Checksum: @x7d5f [validation disabled]
Urgent pointer: @ v
o7 Packets: 6 - Displayed: 4 (66.7%) Profile: Default

Figure 12: Server Transmission to Client with Error Corrected

11

Figure 13: PIC32 LED1 High when Error is Detected

Case 3 - Error in Parity Location

A special case where we investigate an error in the column parity character will
conclude our results. If an error occurs in the column parity character our program
will still say there are no errors. The calculation is correct since a bit flip in the row

parity character does no compromise our original message.

To demonstrate, we loop the client sending information to the server until we

introduce an error in the row parity character.

File Edit View G

M Ethemet

)

Capture Analyze Statistics Telephony

Wireless Tools Help

Adwd® ReEF s Elaaan
(I [t [X] ~ | Expression...
MNo. Time Time Source Destination Protocol Length Info

122. @.. 192.1638.2.182 192.168.2.185 TCP 89 [TCP segment of a reassembled PDU]

2 22.. @... 192.168.2.105 192.168.2.182 TCP 6@ 6653 = 43755 [ACK] Seq=1 Ack=36 Win=512 Len=0

3 22.. @.. 192.168.2.185 192.168.2.182 TCP 89 [TCP segment of a reassembled PDU]

4 22.. @... 192.168.2.102 192.168.2.185 TCP 54 43755 = 6653 [ACK] 5eq=36 Ack=36 Win=6291@ Len=0

~ 9066 88 B4 a3 @0 68 B2 94 de 88 6c 23 88 B8 89 45 88

Frame 1: 89 bytes on wire (712 bits), 89 bytes ca..
Ethernet II, Src: Giga-Byt_6c:23:88 (94:de:BB:6c:..
Internet Protocel Version 4, Src: 192.168.2.182, ..

v Transmission Control Protocol, Src Port: 43755 (4.

Source Port: 43755
Destination Port: 6653
[Stream index: 8]

[TCP Segment Len: 35]
Sequence number: 1
[Next sequence number: 36
Acknowledgment number: 1
Header Length: 28 bytes
Flags: @x@18 (PSH, ACK)
Window size value: 62945

(relative sequence numbe..
(relative sequenc..
(relative ack numb..

v

@@ 4b 2a B8 00 9@ 80 @6
82 69 aa eb 19 fd bd ac
f5 el 86 5d @@ 8@ 88 ca
d4 de 41 cc e8 ca e7 e8
41 8d cc de e4 41 8b 8b

80 @@ c@ a8 B2 66 c@ ab
1f fa @@ 8f 47 55 5@ 18
ed d2 dd 41[E5]o o4 ca
41 e7 8b e8 e4 d2 dd cf
b7

@ 7 wireshark_peapng_D5844065-639D-44FD-80AF-29023786FCBA_20160211223921_a06868

Packets: 6 - Displayed: 4 (66.7%)

Profile: Default

Figure 14: Client Transmission to Server with Error in Row Parity Character

12

In the example shown above we can see there is an error in the row parity
character for the first group. What was a row parity character of Oxel was flipped

to Oxe3.

Table 5: 2D Even Parity Encoded Receive Buffer (With Row Parity Error Highlighted)

Group 7 Byte Group

1 88 caedd2dd4le3
a9e4 cadd dedlcc
e8cae7e841e78b
e8ed d2 dd cf418d
ccde e4 41 8b 8b b7

v b WN

Our PIC32 server does not detect errors in this transmission since the error
occurred in the even row parity character. The message echo back from the
server to the client thus does not have this bit flip corrected. In fact, we cannot
correct this error since the even row parity character does not necessarily need
to contain an even number of bits. We therefore cannot detect which bit was
flipped. In the echoed message back to the client we see the error is still present.

M “Ethemet - [m] X
File Edit View Go Capture Anshze Ststistics Telephony Wireless Tools Help
dEa® Res=ZF I I|Eaaanl
[tep [X] - | Expression +
Ma. Time Time Source Destination Protocol Lengtt Info
122, @.. 192.168.2.182 192.168.2.105 TCP 89 [TCP segment of a reassembled PDU]
2 22.. @... 192.168.2.185 192.168.2.182 TCP 68 6653 » 43755 [ACK] Seq=1 Ack=36 Win=512 Len=8
3 22u @... 192.168.2.185 192.168.2.102 TCP 89 [TCP segment of a reassembled PDU]
4 22.. @... 192.168.2.182 192.168.2.185 TCP 54 43755 + 6653 [ACK] Seq=36 Ack=36 Win=6291@ Len=8
Frame 3: 89 bytes on wire (712 bits), 89 bytes ca.. A 94 de 88 6c 23 33 @0 @4 33 22 @0 02 93 8@ 45 00 SeelELLL LLLLLLE
Ethernet II, Src: Microchi_88:00:02 (88:84:a3:00:.. 88 4b @1 4e @9 BA 64 @6 cf 3T c@ a8 B2 69 c@ a8 .K.N..d. .?...0..
Internet Protocol Version 4, Src: 192.168.2.185, .. gi Sg %3 Ig = ;’; gg ef 4; jg Sg x 1: 53 18 ft e GU-A P
- s X ca e e3fad e4 ca ..t..... L.LALL
Transmission C?ntrol Protocol, Src Port: 6653 (66.. d4 de 41 cc o8 ca e7 o8 41 7 8b o8 mAVd2 dd of e
source Part: 6653 41 Bd cc de o4 41 8b 8b b7 A
Destinaticn Port: 43755
[Stream index: 8]
[TCP Segment Len: 35]
Sequence number: 1 (relative sequence numbe..
[Next sequence number: 36 (relative sequenc..
Acknowledgment number: 36 (relative ack num.
Header Length: 28 bytes
Flags: @8x@18 (PSH, ACK)
Window size value: 512 =
@ Packets: 6 - Displayed: 4 (66.7%) Profile: Default

Figure 15: Server Transmission to Client with ROW Parity Error Not Corrected

13

[II. Conclusion

In conclusion, we have shown that a message can be encoded to contain
redundant information so if an error is introduced during transmission we can
correct it on the receiving side. The process is efficient since it does not require
the server to retransmit the entire original message if an error is introduced. The
receiver has the means to correct the error itself. 2D even parity encoding is an
efficient error correction algorithm since it does not require the original message
to be sent twice repeatedly. For example if in this experiment our original message
was 30 bytes in length. With the 2D even parity encoding the message length only
increased by 5 bytes instead of doubling our message by two to 60 bytes.

There are limitations to the 2D parity encoder. For example, in this lab we restricted
errors to only occur to one bit in our original message. If there were two errors we
wouldn’t be able to correct the message since there is probability the errors will
occur in the same row or column. If there are two bit flips to one row and column
the even parity encoding check will hold true and pass through our decoder
undetected. For more than two bits an error in a transmission we need even more
redundant parity bits. We will investigate this process in the next lab.

IV. Appendix

void evenParityEncoder(const char *myStr, char *transmitBuffer, int tlen)
{
int i;
int j = 0;
int m = 9;
// Create last row buffer container
char rowBuffer[bufferCols];

for(i=0; i < tlen; i++)

{
// Check if we are calculating col parity
if(i!=0 && (j==6))

setColParity(rowBuffer, transmitBuffer, i);

j=0;

continue;
¥
// Copy one bit shifted string contents into transmit buffer
transmitBuffer[i] = myStr[m++] << 1;

// See if we need to set row parity bit high
if (hasEvenParity(transmitBuffer[i])==0)
{

transmitBuffer[i] ~= 1;

rowBuffer[j++] = transmitBuffer[i];

Code Snippet 1

14

void setColParity(char *rowBuffer, char *transmitBuffer, int colIndex)
{

int i, j;

int rowBufferLen = strlen(rowBuffer);

char colBitBuffer;

transmitBuffer[colIndex] = 0;

for (i =0; i < 8; i++)

{
colBitBuffer = 0;
// Last Row is reserved for parity
//
for (j = @; j < rowBufferLen; j++)
colBitBuffer |= ((rowBuffer[j] & (@x01 << i)) >> i) << j;
¥
if (hasPartialEvenParity(colBitBuffer, rowBufferLen)==0)
{
transmitBuffer[colIndex] |= (1 << i);
¥
b

Code Snippet 2

15

void evenParityDecoder(char *recieveBuffer, int rlen)

{
int i;
int j = 0;
int colError;
// Plus one for the col parity bit character
char rowBuffer[bufferCols+1];
// First we check column parity chars
for(i=0; i < rlen; i+=bufferCols+1)
{
// create a buffer to hold our row and col parity bit character
memcpy (rowBuffer, recieveBuffer+i, bufferCols+l);
// check if array of characters has even parity along the column
colError = hasEvenParityArray(rowBuffer, bufferCols+1);
// if a column char doesn't have even parity then we know
// there is an error
if (colError >= 0)
{
// Set led 1 (red) high
MPORTDSetBits(BIT_0);
for(j=0; j < bufferCols; j++)
if (hasEvenParity(rowBuffer[j])==0)
{
// flip the problem bit
rowBuffer[j] "= (0x01 << colError);
// Correct the received data.
recieveBuffer[i+j] = rowBuffer[j];
return;
}
// We detected an error but is was a in the parity col. We blink
// led 1 (red))
DelayMsec(100);
mPORTDClearBits(BIT_0);
DelayMsec(100);
mPORTDSetBits(BIT 0);
DelayMsec(100);
mPORTDClearBits(BIT_O);
}
}
}

Code Snippet 3

16

int hasEvenParityArray(char *rowBuffer, int rowBufferLen)

{
int i, j;
char colBitBuffer;
for (i = 0; i < 8; i++)
{
colBitBuffer = 0;
// Last Row is reserved for parity
//
for (j = @0; j < rowBufferLen; j++)
{
colBitBuffer |= ((rowBuffer[j] & (@x01 << i)) >> i) << j;
if (hasPartialEvenParity(colBitBuffer, rowBufferlLen)==0)
{
return i;
}
}
return -1;
¥

Code Snippet 4

int hasPartialEvenParity(char x, int colCount)

{
int i;
int count = 0;
// Loop through each bit of the car
//

for (i = @; i < colCount; i++)

if (x & (Ox01 << 1))
{

}

if (count % 2) return 0;
return 1;

count++;

Code Snippet 5

Full raw source code available upon request. Email devin.trejo@temple.edu.

V. References

[1] W. Stallings, Data and Computer Communications, Person Education Inc. ,
2014.

mailto:devin.trejo@temple.edu

	I. Summary
	I. Introduction
	II. Discussion
	2D Even Parity Implementation
	2D Even Parity Demonstration - Wireshark Analysis
	Case 1 – No Error
	Case 2 – Error in Original String
	Case 3 – Error in Parity Location

	III. Conclusion
	IV. Appendix
	V. References

