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Abstract—Creating a variable sampled signal allows for 

conservation of bandwidth and power however it removes the 

ability to accurately find a Discrete Fourier Transform (DFT). A 

requirement of the DFT is that the signal itself by uniformly 

sampled. In this paper we show how it is possible to find the DFT 

using interpolation. Interpolation is a process of estimating 

intermediate sample values from the surrounding samples 

resulting in a constantly sampled signal. From an interpolated 

version of the signal we can once again find the DFT of the original 

signal.  

I. INTRODUCTION  

A. Signal Construction 

 Processing a signal at a variable sampling rate allows for a 
lower sampling rate over portions of the signal where the 
instantaneous bandwidth is lower. Sampling at a variable rate 
requires less memory, consumes less power, and is less 
computationally expensive when applying a filter. These 
resources can be invaluable when programming embedded 
hardware. However, if one doesn’t know the frequency of the 
input signal it is often safer to sample at a constant sampling rate 
and use an anti-aliasing filter to prevent further distortion. One 
might be inclined to sample at a constant rate first then change 
to a variable sampling rate afterwards for transmitting data 
where there will be less data to transmit.  

 This paper will explore taking a signal containing three 
bursts of different frequency cosines that are sampled at a 
constant sampling frequency above the Nyquist rate of the 
bandwidth of the signal. After we create a second version of the 
original signal using a variable sample rate. 

We construct the two versions of the signal using from the 
following periodic signals: 

𝑥 = 0.1cos⁡((2𝜋)1𝑡) + {

cos((2𝜋)22𝑡) 1 < 𝑡𝑠𝑒𝑐 < 4

cos((2𝜋)11𝑡) ⁡5 < 𝑡𝑠𝑒𝑐 < 10

cos((2𝜋)1.5𝑡) ⁡12 < 𝑡𝑠𝑒𝑐 < 15

 

A plot of the signals is show below.  

 

 

Figure 1: Original signal (top) Variable Sampled signal (bottom) 

Observing the signals shows that they do not differ greatly. 

We do lose some resolution at the burst portions of the signal. 

The variable sampling frequency is still above the Nyquist rate 

of the instantaneous bandwidth of the signal so most of the 

signal content remains.  

To see the difference between the two signals we use a stem 

plot to show how five samples of the variable signal compares 

to 4586 samples in the original signal. The plots below illustrate 

how many samples are being saved in the resampled signal 

while still maintaining most of the original signal definition. 

 

 

 
Figure 2: Original signal (top) Variable Sanmpled signal (bottom) 

Looking at the period between samples we can see how the 

sample frequency changes from sample to sample. We will see 

how the varying sample rate will prevent us from finding an 

accurate DFT.  
Variable 

Signal 

Sample (N) 

Sample time 

(sec) 

Period Between 

Samples (n-(n-

1) 

Sample 

Frequency (Hz) 

27 1.4883 0.0286 34.96503 

28 1.5148 0.0265 37.73585 

29 1.5395 0.0247 40.48583 

30 1.5624 0.0229 43.66812 

31 1.5841 0.0217 46.08295 

32 1.604 0.0199 50.25126 

B. Signal FFT 

For this project we will be looking at the frequency content 

of our signals. To find the frequency spectra of the discrete 
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time signal requires the use of the Discrete Fourier Transform 

(DFT). We learn that the Fourier Transform and the DFT are 

almost the same except for we change the continuous integral 

to a discrete summation. 

𝑋[𝐹] = ∑ 𝑥[𝑛]𝑒−𝑗Ωk𝑛
𝑁−1

𝑛=0

 

The DFT can be taken of both signals and one would clearly 

find that the DFT of the varying sampled signal to be incorrect. 

Compare the constant sampling rate signal with the varying 

sampled signal: 

 

 

Figure 3: FFT of original (top) and resampled signal (bottom) 

 In the DFT of the original signal we can see the underlying 
frequencies that make up our signal. We have frequency content 
at the expected frequencies of 1, 1.5, 11, and 22 Hz. When we 
resample the signal, the sample rate is constantly changing and 
the resulting DFT is unrecognizable. A pre-requisite for taking 
the DFT is that the signal 𝑥[𝑛] is uniformly sampled.  

 This paper addresses the problems a variable sample signal 
introduces. In what scenarios is a uniformly sampled signal 
preferred over a variably sampled signal? 

II. APPROACH 

A. Interpolation 

In general terms, interpolation is an estimation of a value 

between known values.  In the context of digital signals, 

interpolation can be used to change the sampling rate of a signal 

from varying to constant as long as one can obtain two or more 

known data points. Interpolation can also be used to up-sample 

a signal that starts with a constant sampling frequency.   

There are two methods of interpolation that are applicable 

to this project: linear interpolation and cubic spline 

interpolation. The main difference between the two types of 

interpolation is how they connect the samples of the signal.  

Linear interpolation takes the derivative between two points 

to find a linear line equation. Imagine you have a particular 

interval (𝑥𝑘 , 𝑥(𝑘+1)). An equation for the line between these 

two points can be created with the point slope formula 

𝑦 − 𝑥𝑘 =
(𝑦𝑘+1 − 𝑦𝑘)

𝑥𝑘+1 − 𝑥𝑘
(𝑥 − 𝑥𝑘)⁡ 

If there is a query point between (𝑥𝑘 , 𝑥(𝑘+1))  a value will be 

created at that query point from the equation of the linear line. 

The function of the line can also be represented by: 

 𝑓 = 𝐴𝑓𝑘 + 𝐵𝑓𝑘+1⁡ (1) 

The coefficients A and B can be found by: 

𝐴 =
(𝑥𝑘+1⁡ − 𝑥)

𝑥𝑘+1 − 𝑥𝑘
 

𝐵 = 1 − 𝐴 

where x with no subscripts is the query point and the x with 

subscripts is the boundary points. 

 Spline interpolation uses a polynomial function when 

connecting samples of the signal, therefore giving it a smooth 

rounded curve.  It is important that cubic spline interpolation be 

continuous in both the first and second derivative. However, the 

linear line between two points does not have a continuous 

second derivative. Also, the first and second derivatives are also 

not continuous at boundary points of two adjacent intervals. A 

new variable can be introduced, 𝑓𝑘′′, that varies linearly from a 

value at 𝑓𝑘
′′ to 𝑓𝑘+1⁡

′′ . This value can be added on the right side 

of eq. 1. 

 𝑓 = 𝐴𝑓𝑘 + 𝐵𝑓𝑘+1 + 𝐶𝑓𝑘
′′ + 𝐷𝑓𝑘+1⁡

′′  (2) 

Where A and B are defined above and then coefficients C and 

D are found as 

𝐶 =
1

6
(𝐴3 − 𝐴)(𝑥𝑘+1⁡ − 𝑥𝑘)

2 

𝐷 =
1

6
(𝐵3 − 𝐵)(𝑥𝑘+1⁡ − 𝑥𝑘)

2 

To check if 𝑓′′  is the second derivative of the interpolated 

equation, the derivative of the generic eq. 2 is taken in respect 

to x, using the definitions of A, B, C, and D to compute: 
𝑑𝐴

𝑑𝑥
, 
𝑑𝐵

𝑑𝑥
, 

𝑑𝐶

𝑑𝑥
 and 

𝑑𝐷

𝑑𝑥
. 

 𝑑𝑓

𝑑𝑥
= ⁡

𝑓𝑘+1 − 𝑓𝑘
𝑥𝑘+1 − 𝑥𝑘

−
3𝐴2 − 1

6
(𝑥𝑘+1 − 𝑥𝑘)𝑓𝑘

′′

+
3𝐵2 − 1

6
(𝑥𝑘+1⁡ − 𝑥𝑘)𝑓𝑘+1⁡

′′  

(3) 

For cubic spline interpolation to be valid the values of 𝑓𝑘
′′ 

must be known, which requires eq. 3 be continuous across the 

boundary interval. Now x is evaluated at 𝑥𝑘  in the interval 

(𝑥𝑘 , 𝑥(𝑘+1))  and rearrange the equation we can obtain 

 
(𝑥𝑘 − 𝑥𝑘−1⁡)

6
𝑓𝑘−1
′′ +

(𝑥𝑘+1⁡ − 𝑥𝑘−1)

3
⁡𝑓𝑘

′′ +
𝑥𝑘+1 − 𝑥𝑘

6
𝑓𝑘+1⁡
′′

=⁡
𝑓𝑘+1⁡ − 𝑓𝑘
𝑥𝑘+1⁡ − 𝑥𝑘

−⁡
𝑓𝑘 − 𝑓𝑘−1⁡⁡

𝑥𝑘 − 𝑥𝑘−1⁡
 

Linear interpolation is simpler computationally but does 

create more rigid signals. One can see the difference between 

linear and cubic spline interpolation in Figure 5. 

As stated above, we chose to use and compare both linear 

interpolation and cubic spline interpolation. Once we 

interpolate the signal, we now have data at a constant sampling 

rate.  Using this new data at a constant sampling rate we can 

now take the Fourier transform of the signal to determine the 

frequency content of the signal.   
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III. RESULTS 

A. Interpolating the Varying Signal 

Using the interpolation technique we were successful in 

reconstructing our variable sampled signal to a constant 

sampled signal. In MATLAB we performed both a linear and 

cubic spline interpolation to see how accurately the two 

methods reconstruct our original signal. In our reconstruction 

process we choose a relatively high sample rate to ensure we 

capture the original signal. Choosing a correct higher resample 

rate is more of a guess and check process since theoretically one 

does not know original signal’s contents. In our case we chose 

a sampling rate of 8000 samples per second. 8000Hz is higher 

than the required Nyquist sample of criteria 2 ∗ 𝑓𝑚𝑎𝑥 which we 

know to be 2 ∗ (22𝐻𝑧) = 44𝐻𝑧 . The resampled signals are 

shown below:  

 

 
Figure 4: Linear and Spline Interpolated Signals 

Comparing the interpolated signals to the variable sampled 

signal it appears that the interpolation did not change much. The 

difference is not apparent until we zoom into a portion of the 

signal.  

 

 
Figure 5: Sampled Signal Compared to Interpolated Signal 

The spline interpolation creates the expected smooth version of 

the signal which we say better relates to the original signal. 

Meanwhile the linear interpolated signal better follows the 

variable sampled signal. Note that the linear interpolated signal 

and the spline interpolated signal contain the same number of 

samples.  

B. DFT of the Interpolated Signal 

Now that we have the signal with a varied sample rate, we 

can find its DFT. Again we take the DFT of both the linear and 

spline interpolated signals to see if one performs better than the 

other. 

 

 
Figure 6: Discrete Fourier Transform of Interpolated Signals  

Comparing the DFT of the interpolated signals (Figure 6) to the 

original signal (Figure 3) we see similar resemblance. The 

important aspects of the correct DFT are the harmonics of 1, 

1.5, 11, and 22 Hz. Both the methods create accurate results.  

Compare the linear interpolation technique to the spline. 

The spline interpreted signal DFT has less noise across the 

spectra since it has a smoother interpretation of the signal. Note 

the small resonating frequency in the linear interpolated DFT 

around 33Hz. The resonance is an artifact of compounding 

noise from the misaligned representation of the original signal. 

The better interpolation method depends on what type of signal 

you are trying to interpolate. Since our signals consisted of a 

sum of sine waves a spline interpolation will create a better 

representation. In a case where a signal contains sharp edges 

such as in a pulse train a linear interpolation will create the 

better output signal. Overall we conclude that both interpolated 

signals allow us to find an accurate representation of frequency 

spectra.  

IV. CONCLUSION 

In conclusion, the DFT assumes evenly spaced points in its 

calculation, which creates problems when a DFT is taken of a 

signal sampled at a varied rate. An easy work around is to 

resample the signal at a constant rate and take the DFT. We 

showed how using interpolation creates a clean uniformly 

sampled signal. We explored two types of interpolation in this 

paper: linear and cubic spline. The DFT of the signal after 

interpolated was accurate for both cases. In Figure 5 it can be 

seen that the cubic spline represents the true nature of the 

signal better but is computationally more intensive.  
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VI. APPENDIX 

Source code can be found on Github: 

https://github.com/dtrejod/myece5514/tree/master/proj1 

https://github.com/dtrejod/myece5514/tree/master/proj1
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