

Homework Assignment No. 05:

RUNNING COMPUTE-INTENSIVE JOBS

Submitted to:

Professor Joseph Picone

ECE 3822: Software Tools for Engineers

Temple University

College of Engineering

1947 North 12th Street

Philadelphia, Pennsylvania 19122

9/28/2015

Prepared by:

Devin Trejo

Email: devin.trejo@temple.edu

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Devin Trejo: HW # 05 Page 1 of 6

ECE 3822: Software Tools for Engineers 9/28/2015

1. PROBLEM

The purpose of this assignment is to demonstrate how to run jobs on a remote machine. Running jobs

remotely is useful when running long, intensive computing scripts. One may want to offload the script or

job to a remote machine which is faster and will continue working even after one closes their laptop for

the night.

To demonstrate this remote compute capability we start by writing a ‘CPU heavy’ script where we print

the date every hour. After we start the script we show it still runs in the background after we logout of the

remote machine. We also show that we can run the job without ever logging into the remote machine.

2. APPROACH

To begin we write a script that will run for an extended period of time. Using a combination of commands

‘sleep’ and a loop we run the job for a long time. The command ‘sleep’ tells the script to wait for the

amount of time specified. The value can be in terms of seconds, minutes or hours. In our script we tell it

to sleep for one hour and loop ten times. Each time we loop we output the date to stdout using the

command ‘date’. This looping script simulates a script that is ‘CPU intensive’ where we expect the

computation to take hours. Using this script we can test remote computing capabilities.

Next we monitor the status of our job in realtime. We want to output our stdout stream to a file instead of

the terminal screen. Nohup allow us to redirect our stdout steam to a file which we will call hw05.out. We

also output stderror to a file to catch any errors that may occur as our script runs. Lastly we need to

disconnect our processor of running the script from our current shell otherwise when we log out all child

processes of our shell will also quit. The following command will let us accomplish all the above

concerns.

Figure 1: Command format to run our hw05.sh script in the background.

Nohup allow us run a job that won’t be interrupted by hangups. Thefore when we disconnect our shell

and it sends a HUP signal to all child processes our processes will not terminate. To have our stdout saved

we output to a file called ‘hw05.out’. The second output argument is the stderror steam which we can also

redirect to a file. All other outputs we output to ‘/dev/null’ which will ensure our script runs successfully.

The & at the end of the command allows the script to run in the background.

nohup <path/to/script>/hw05.sh > hw05.out 2> hw05.err < /dev/null &

Devin Trejo: HW # 05 Page 2 of 6

ECE 3822: Software Tools for Engineers 9/28/2015

3. RESULTS

First we create our script to loop for a very long time and output the date on each loop iteration. In our

script we loop ten times where we sleep for one hour each time. Therefore we expect a date timestamp

every hour ten times. The script format is as follows:

Figure 2: hw05.sh

Next we use our processes for running a script in the background. We can confirm the job is running by

using the command ‘jobs’ to see it running.

Figure 3: Running the jobs in the background

At this point we can continue using the shell as our intensive job runs in the background. We also can

disconnect our current shell and have our jobs till running. Before we disconnect we note the job ID

allowing us to find the job after we have disconnected.

#!/bin/bash

ECE3822 Hw: 5

for i in `seq 1 10`;

do

 # Print the current date and time

 date

 # Wait one hour before printing date again

 sleep 1h

done

Devin Trejo: HW # 05 Page 3 of 6

ECE 3822: Software Tools for Engineers 9/28/2015

Figure 4: Running ‘ps’ to find process ID

Next we disconnect and reconnect and see that our job is still running.

Figure 5: Job is still running after closing the ssh session.

In the end we show that our script ran successfully over its entire 10 hour course.

Devin Trejo: HW # 05 Page 4 of 6

ECE 3822: Software Tools for Engineers 9/28/2015

Figure 6: Checking on the stdout/error the next day

Alas we conclude by showing we can actually run a script on a remote machine without ever logging into

the remote machine. As one knows to login into a remote machine we use the secure shell command

‘ssh’. Well one can pass an argument to the ‘ssh’ command and have it executed on the remote machine.

We demonstrate the concept by starting out from our local machin. After we run the code we then login

into the remote machine and grep for the process. The processes we started from the local machine is

shown to be indeed running.

Figure 7: Running a script remotely without every logging into the remote machine.

We can monitor the realtime output of our script by running ‘tailf’ command on our stdout steam file

‘hw05_remote.out’. Note that since I did not specify the full path for our stdout steam it saved the files in

home directory.

Devin Trejo: HW # 05 Page 5 of 6

ECE 3822: Software Tools for Engineers 9/28/2015

Figure 8: Monitoring the real-time status of our output.

4. ANALYSIS

 What we have shown in this homework task is the powerful capabilities of running jobs remotely. Today

the emphasis on computing power is being reserved to big computing farms located in some remote

location. The local machine one works from is simply a terminal or script editing station. The real

computation of the script is reserved for more powerful machines loaded with faster processors and large

amounts of RAM. One may never see the actual machine the remote machine is running off of. However

as long as it is accessible via a remote connection, use the remote machines as if it were a local machine.

The task asked was successfully accomplished in that we ran a script remotely in the background for an

extended period of time. We showed the processes of redirecting the output/error streams, which would

typically populate the terminal screen, to a file. Having a file that separates the output and errors is

valuable when one is trying to find where their script broke down. The error would typically be buried in

the terminal output stream.

Next we showed that the script is disconnected from our shell allowing the script to run even after closing

the ‘ssh’ connection. This idea comes handy so that one does not need to have their local machine running

just to execute a command on a remote machine. In fact we showed that one does not even need to login

to the remote machine and instead can start and execute a script all from their local machine. Depending

on a user’s flow either approach is shown to be viable.

	1. Problem
	2. Approach
	3. Results
	4. Analysis

