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I. PROBLEM STATEMENT 

The assignment we will explore today is to create a simulation that will allow us to apply a pattern recognition 

system based around maximum likelihood classification. The entire process is a simulation thus we will be required 

to first generate our own Gaussian distrusted data, then transform it using principle component analysis as we 

explored in CA12, and lastly classify it. In our assignment we will focus on analyzing five different cases. In each 

case we will only change our 𝜎2 parameter. The parameters we analyze our laid out below: 

Class 1: 

µ1 = [
1
1

] ; 𝐶1 = [
1 0
0 1

] 

Class 2: 

µ2 = [
−1
−1

] ; 𝐶2 = [
𝜎2 0.5
0.5 𝜎2

] 𝜎2 → 0.25, 0.5, 1.0, 2.0, 4.0 

As can be seen our first class parameter do not change. It is a Gaussian distributed multivariate array with equal 

energy in all directions. It has a mean that centers around [1,1]. Our second class energy changes but the correlation 

between our multivariate array stays constant at 0.5 Our second class will be center around [-1, -1]. 

From classification we use maximum likelihood classification. Before performing the classification we transform 

each set of data using principal component analysis. The process will convert our data sets so our data is not 

independently correlated. Thus our covariance matrix will have an off diagonal of zeros. By performing the 

transformation we can perform a Euclidean distance calculation (instead of a Mahalanobis distance) to the means of 

our data sets. What we wish to see is how the energy of our data correlates to the classification success of our data.  

  



II. APPROACH AND RESULTS 

We begin our analysis by create multiple cases to compare. The results are laid out below. We plotted both the 

original un-transformed data (left) with the transformed scatter plot of our classes (right).   

  

Figure 1: Scatter Plot Histogram for 𝜎2 = 0.25 

 

Figure 2: Mean Difference and Classification Results for 𝜎2 = 0.25 

The above case is our first test. We see our two sets of data and how the principal component analysis transforms 

our data so that they become uncorrelated. Our transformation process is performed to the expected means of data 

sets where we see there is hardly any difference for our first set of data. For our second class our mean differs 

slightly. The error can be produced in our data creation process. We still see that even though we our mean is off by 

23% our classification error rate is low for this case.  

Sigma2 = 0.250 

Average Percent Diff transformed mean v actual: Y1 = 1.560, Y2 = 23.069 

Y1: Class1 = 9520.000 Class2 = 480.000 || Y2: Class1 = 514.000 Class2 = 9486.000 

 Classification Error = 4.970 



  

Figure 3: Scatter Plot Histogram for 𝜎2 = 0.5 

 

Figure 4: Mean Difference and Classification Results for 𝜎2 = 0.5 

The second case we encountered trouble in transforming that data. Since the data has equal variance and correlation 

in both directions our data is hard to un-correlation using principal component analysis. Thus we were not able to 

produce results for this case.  

  

Figure 5: Scatter Plot Histogram for 𝜎2 = 1.0 

Sigma2 = 0.500 

Average Percent Diff transformed mean v actual: Y1 = 0.316, Y2 = NaN 

Y1: Class1 = 0.000 Class2 = 10000.000 || Y2: Class1 = 0.000 Class2 = 10000.000 

 Classification Error = 50.000 



  

Figure 6: Mean Difference and Classification Results for 𝜎2 = 1.0 

As we increase our energy for our second class so that it has equal energy as our first class we see it becomes harder 

to differentiate the two. In this case we produced a higher classification error rate. We observe how both data sets 

when transformed overlap heavily.   

  

Figure 7: Scatter Plot Histogram for 𝜎2 = 2.0 

 

Figure 8: Mean Difference and Classification Results for 𝜎2 = 2.0 

Similar to the previous case in this instance the two data sets overlap heavily thus we have a higher classification 

error rate. The maximum likelihood classification process still does have better than 50% success in differentiating 

the two data sets. For one our expected mean for our second transformed data set is off greatly from the true mean. 

Again depending on the number of data points our generator produces determines how actual mean differs from the 

true mean we asked it to generate. 

Sigma2 = 1.000 

Average Percent Diff transformed mean v actual: Y1 = 0.864, Y2 = 32.158 

Y1: Class1 = 6892.000 Class2 = 3108.000 || Y2: Class1 = 3004.000 Class2 = 6996.000 

 Classification Error = 30.560 

Sigma2 = 2.000 

Average Percent Diff transformed mean v actual: Y1 = 1.215, Y2 = 57.636 

Y1: Class1 = 6684.000 Class2 = 3316.000 || Y2: Class1 = 3293.000 Class2 = 6707.000 

 Classification Error = 33.045 



  

Figure 9: Scatter Plot Histogram for 𝜎2 = 4.0 

 

Figure 10: Mean Difference and Classification Results for 𝜎2 = 4.0 

In our last case our generator produces data the centers around its true mean very nicely, thus our classification error 

decreases. We were successfully able to differentiate the two sets of data with an error rate of 23.85%.  

III. MATLAB CODE 

 

1 First function is ‘get_grvs’ which creates generates two normal multivariate distributions. We use the function to create our two classes. First 

we must create two arrays of normally distributed variables with size N. Next we multiply by the covariance matrix to fit it to the covariance 

matrix asked for by the assignment. Then we need to add the mean offset.  

Sigma2 = 4.000 

Average Percent Diff transformed mean v actual: Y1 = 2.542, Y2 = 2.050 

Y1: Class1 = 7633.000 Class2 = 2367.000 || Y2: Class1 = 2398.000 Class2 = 7602.000 

 Classification Error = 23.825 

function out = get_grvs(mu, covariance, N) 

     

    % Generate the random arrays 

    out = randn(N,size(covariance,1))*covariance; 

     

    % Add in Means 

    % First make same size 

    mu1 = ones(N,1)*mu(1); 

    mu2 = ones(N,1)*mu(2); 

     

    out = [out(:,1)+mu1 out(:,2)+mu2]; 

end 

 



 

2 We also created another function which allows us to plot histogram scatter plot called ‘plotHistScatter2’. We named it 2 since MatLab has a 
built in ‘scatterhist’ function but it only plots one set of data. To plot two sets of data we combine our matrices into one and create a cell array 

which will differentiate the two sets of data. If we pass the cell array to ‘scatterhist’ we are able to plot the two classes with a very cool histogram 
on both the X and Y axes. 

 

3 Simple function that find the difference between two numbers.   

 

4 The main function for the assignment starts by generating our two classes. We take in two variables sigma2 and N which we will use in another 

script to pass it various sigma2 values for comparison purposes. Once we have our data we plot the scatter histogram of our data with their 
respective means highlighted with an asterix.  

function h = plotHistScatter2(X1, X2, class1txt, class2txt) 

     

    N = size(X1, 1); 

    % To plot scatter we need to combine our two arrays 

    X = cat(1, X1, X2); 

  

    % Create a legend depicting the two arrays of X. Note this must be done 

    % using cell arrays 

    Xdescrip = cell(N,1); 

    for i = 1:N 

        Xdescrip(i) = {class1txt}; 

        Xdescrip(i+N) = {class2txt}; 

    end 

  

    % Plot the combined scatter plot 

    h = scatterhist(X(:,1), X(:,2),'Group',Xdescrip); 

    grid on 

  

end 

 

 

function diff = perDiff(val1, val2) 

     

    diff = abs((val1-val2)/val2*100); 

end 

 

function stoCa13(sigma2, N) 

  

% sigma2 = .1; 

% N = 1E4; 

  

% Given Classes Values 

mu1 = [1; 1]; 

C1 = [1 0; 0 1]; 

mu2 = [-1; -1]; 

C2 = [sigma2 0.5; 0.5 sigma2]; 

  

  

% Generate the multi-classes 

X1 = get_grvs(mu1, C1, N); 

X2 = get_grvs(mu2, C2, N); 

  

% Plot Scatter 

figure(); 

plotHistScatter2(X1, X2, 'Class X1 (w1)', 'Class X2 (w2)'); 

title(sprintf('Histogram Raw Data (Sigma2 = %0.3f)',sigma2)) 

  

% Plot New Means of Data 

hold on 

plot(mu1(1), mu1(2), 'c*'); 

plot(mu2(1), mu2(2), 'y*'); 

hold off 

 



 

5 Using principle component analysis we are able to transform our two classes. First we find our Eigen values using the built in MatLab function. 
This we find our transformation matrix V1 and V2 for each class respectively. We can then transform our data. We compare the transformed 

means with the true means to if our transformation correlates to the true data.  

 

6 Plot new scatter plot for our transformed data.   

% Find actual Covariance Matrices 

cov1 = cov(X1); 

cov2 = cov(X2); 

  

% Principle Component Analysis 

% Eigen Value Analysis Returns Eigen Values in Ascending Order 

[eigvec1, eigval1] = eig(cov1); 

[eigvec2, eigval2] = eig(cov2); 

  

% Tranformed Data 

V1 = (eigval1^-(1/2))*eigvec1'; 

V2 = (eigval2^-(1/2))*eigvec2'; 

Y1 = (V1*X1')'; 

Y2 = (V2*X2')'; 

  

% Check to ensure PCA worked 

Zc1 = cov(Y1); 

Zc2 = cov(Y2); 

  

% Transform Mean 

mu1prime = (V1*mu1); 

mu2prime = (V2*mu2); 

meanY1 = mean(Y1)'; 

meanY2 = mean(Y2)'; 

 

% Find difference between actual mean and transformed means 

diffmean1 = mean([perDiff(mu1prime(1), meanY1(1)), perDiff(mu1prime(2), meanY1(2))]); 

diffmean2 = mean([perDiff(mu2prime(1), meanY2(1)), perDiff(mu2prime(2), meanY2(2))]); 

fprintf(sprintf('Average Percent Diff transformed mean v acutal: Y1 = %0.3f, Y2 = 

%0.3f\n',... 

    diffmean1, diffmean2)); 

 

% Plot new Scatter for Transformed Data 

figure() 

plotHistScatter2(Y1, Y2, 'Class Y1 (w1)', 'Class Y2 (w2)'); 

title(sprintf('Histogram Transformed Data (Sigma2 = %0.3f)',sigma2)) 

  

% Plot New Means of Data 

hold on 

plot(mu1prime(1), mu1prime(2), 'c*'); 

plot(mu2prime(1), mu2prime(2), 'y*'); 

hold off 

 

 



 

7 We now will attempt to classify our data by using Euclidean distance. For each data point in both our transformed data Y1 and Y2 we find its 
distance from the two data means. Whichever mean our data point is closest to we classify that data point to that class. We keep track whether is 

classified correctly or not.  

 

8 As we classified our data we kept track whether it classified correctly or not.  We print this to the console so that the user knows our 
classification error.  

 

% Find distances between points for Y1 & Y2 

% Start Counts at Zero 

sameDY1 = 0; 

class1Y1 = 0; 

class2Y1 = 0; 

sameDY2 = 0; 

class1Y2 = 0; 

class2Y2 = 0; 

  

% Find distances between points Y1 

for i = 1:N 

   u1D = sqrt((Y1(i, 1)-mu1prime(1))^2+(Y1(i, 2)-mu1prime(2))^2); 

   u2D = sqrt((Y1(i, 1)-mu2prime(1))^2+(Y1(i, 2)-mu2prime(2))^2); 

    

   if (u1D == u2D) 

       sameDY1 = sameDY1+1; 

   elseif (u1D < u2D) 

       class1Y1 = class1Y1 + 1; 

   else 

       class2Y1 = class2Y1 + 1; 

   end 

end 

  

% Find distances between points Y2 

for i = 1:N 

   u1D = sqrt((Y2(i, 1)-mu1prime(1))^2+(Y2(i, 2)-mu1prime(2))^2); 

   u2D = sqrt((Y2(i, 1)-mu2prime(1))^2+(Y2(i, 2)-mu2prime(2))^2); 

    

   if (u1D == u2D) 

       sameDY2 = sameDY2+1; 

   elseif (u1D < u2D) 

       class1Y2 = class1Y2 + 1; 

   else 

       class2Y2 = class2Y2 + 1; 

   end 

end 

 

% Find Classification Error 

classErr = (class2Y1 + class1Y2)/(2*N)*100; 

  

fprintf(sprintf('Y1: Class1 = %0.3f Class2 = %0.3f || Y2: Class1 = %0.3f Class2 = %0.3f\n 

Classficiation Error = %0.3f \n\n', ... 

    class1Y1, class2Y1, class1Y2, class2Y2, classErr)); 

  

end 

 

%% Program script 

clear; close all; clc; 

  

% Assignment Constants 

sigma2 = [0.25 0.5 1 2 4]; 

N = 1E4; 

  

for s = sigma2 

    fprintf(sprintf('Sigma2 = %0.3f\n',s)); 

    stoCa13(s, N); 

end 

     

     

 



9 We wrote another script that allows us to sweep across various sigma 2 values. Sigma2 corresponds to the main diagonal for our second class 

covariance matrix.  

IV. CONCLUSIONS 

From our experiment we were able to clearly observe the process of maximum likelihood classification. Depending 

on the data you are working with will determine how accurately you are able to classify. In our tests we saw how our 

results depended greatly on our data being close to the expected means of [1,1] and [-1,-1]. We can correlate the 

assignment to sending data digitally over a communication channel. Digital data has values of zero or one thus we 

expect our data on the receiving end of our network to receive one of two values. However we know that as we send 

pulses across copper wires, resistance of the wires will cause the data to lose energy so any logic ones that you send 

down your network may look like zeros. Also since no system is perfect a digital zero will have some noise so its 

true value may not be zero. On your receiver you then must perform a similar process to what we performed in this 

assignment. There need to be a threshold between what you accept as a zero or one. Every bit you receive would 

need to go through some sort of classification process in order to determine what its values should be. We showed 

that there is error in the classification process thus you must design your system to tolerate or bit check these errors. 

In this assignment we focused on only two classes of data. If we increase the number of classes it should be obvious 

that the classification process become harder. First you have the problem in determining how many classes you 

should be expecting. It may not always be known that the data you’re looking at is produced by four different 

sources. Depending on the overlap between the classes will determine whether your thresholds are set far enough 

apart to section off your classes successfully.  


