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I. PROBLEM STATEMENT 

In this assignment we introduce Principal Component Analysis which will allow us to take a set of data and 

transform it so appears uncorrelated. Using some data built into MatLab we can successfully apply principal 

component analysis in a study that tracks 349 different cities’ climate, housing, health, crime, transportation, 

education, arts, recreation, and economics statuses.  

To begin applying principal component analysis we first must find our whitening transform matrix. The transform 

matrix is constructed from the Eigen vectors and values of our data’s covariance matrix. The constructed is shown 

below: 

𝑊ℎ𝑖𝑡𝑒𝑛𝑖𝑛𝑔 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 = (√𝐸𝑖𝑔𝑒𝑛𝑉𝑎𝑙𝑢𝑒)(𝐸𝑖𝑔𝑣𝑒𝑛𝑉𝑒𝑐𝑡𝑜𝑟𝑇) 

The transformed data will appear uncorrelated. A test we perform to see if this is true is to compute the covariance 

matrix of our transformed data. If the data is truly uncorrelated the off-diagonal will be all zeros.  

Lastly we will want to see which two cities are the most closely related. We will apply a Euclidean distance to 

determine which ratings of two cities are the most closely related. We perform this step for our un-transformed 

II. APPROACH AND RESULTS 

First we will showcase a sample of the raw ratings matrix.  

 

Figure 1: Sample of the Ratings Matrix (Note it is 349 Rows Long) 

Now we can find the covariance of the ratings matrix which will lead us to finding the Eigen Vectors and values. 

We display them below: 



 

Figure 2: Eigen Vector Matrix for Ratings Data 

 

Figure 3: Eigen Value Matrix for Ratings Data 

From the Eigen value matrix we see that the largest value occurs in the 9th column which tells us that the 9th column 

has the most variance in it. You can see this is true if you reference Figure 1. Referencing the corresponding 

categories matrix loaded in with the cities data we see how the 9th column corresponds to the economic status of 

each city. Since this Eigen value is the largest we know the Eigen vector corresponding to this Eigen value has the 

most weight in the transform. The second largest Eigen Value occurs in the 8th column which correspond to a city’s 

recreation. If we remove the two rating criteria with the largest Eigen values we will observe how much weight they 

have on the variance of the ratings data set (climate, housing, health). If we look at the Eigen values for these 

columns we see how they  



 

Figure 4: Variance v Eigen Value Size 

The above plot showcases how the largest Eigen values effect the variance of the data. We can now successfully 

compute our transformation matrix. We call our new matrix Y1. If we compute the covariance matrix of Y1 we 

observe an identity matrix (with rounding errors).  

 

Figure 5: Covariance of Transformed Ratings Matrix 

Now that we have our original data and our transformed data we will find the two cities that share the closest 

ratings. In our first case we use our raw untransformed data. In our second case we use our transformed data which 

will allow us to find the two cities who are the most similar across all the different categorizes. Lastly, we will limit 

our ratings data to be only the first three categorizes (climate, housing, and health). 

 



 

Figure 6: Closest cities Result 

In our first scenario we see that the three closest cities are two from PA and on from IN. Since we found these 

distance measures from the un-transformed data set we note that these three cities are most similar in regard to 

economic status only. When we switch to using the transformed data set we see how we end up with different 

results. The two closest cities if were to weight all categories equally are a city from OH and one from MI. Lastly if 

we only concentrate on finding the three closest cities in terms of the first three categorizes our results change once 

again.  

Raw Data: 

The closest cities: Johnstown, PA & Elkhart-Goshen, IN                          

The third closest city: Altoona, PA                                 

Transformed Data: 

The closest cities: Hamilton-Middletown, OH  & Grand Rapids, MI                            

The third closest city: Lewiston-Auburn, ME                         

Transformed Data limited to first 3 criteria: 

The closest cities: St. Joseph, MO  & Champaign-Urbana-Rantoul, IL                

The third closest city: Medford, OR      



III. MATLAB CODE 

 

1 Main Program Script. We first load in our cities data set and compute its covariance. From the covariance matrix we are able to find a 

whitening transform that will uncorrelated the data. To test the hypothesis we compute the covariance of our transformed data to the console. For 
each Eigen value we compute the correspond variance it has on the data. After we find our transformed data we will now find the closet cities 

using the ‘findThreeSimilar’ function. 

%% Program script 

clear; clc; close all 

  

% Load Cities data set 

load cities 

  

% Compute Covariance Matrix 

CovC = cov(ratings) 

  

% Find Eigen Value/Vectors 

[eigVec, eigVal] = eig(CovC) 

  

% Tranformed Data (Whitening Transform) 

V1 = (eigVal^-(1/2))*eigVec'; 

  

% Display Covariance Matrix (Note: Its an identity) 

Y = (V1*ratings')'; 

Ycov = cov(Y) 

  

% Plot percent of variance accounted for by the first n eigenvalues 

n = 1:size(ratings,2); 

sortEigVal = sort(sort(eigVal, 1, 'descend'), 2, 'descend'); 

for i = n 

    varPer(i) = (sortEigVal(1,i))/sum(sortEigVal(1,:), 2)*100; 

end 

  

figure(); 

plot(n, varPer); 

xlabel('Eigen Value Size (n)'); 

ylabel('Percent of Variance'); 

title('Percent Variance vs Eigen Value Size'); 

grid on; 

  

  

% Find the two cities that are closet together 

fprintf('Raw Data:\n'); 

findThreeSimilar(names, ratings, size(ratings,2)); 

fprintf('Transformed Data:\n'); 

findThreeSimilar(names, Y, size(Y,2)); 

fprintf('Transformed Data limited to first 3 criteria:\n'); 

findThreeSimilar(names, Y, 3); 

     

 



 

2 We write a ‘findThreeSimilar’ function to find the three cities that share the closet ratings. First we go through and limit the scope of our data if 

necessary. Then we use a Euclidean distance measure to find the cities that have the closest ratings to one another. Since the minimum Euclidean 
distance will always occur when comparing a rating to itself (along the main diagonal) we set these distances equal to infinity. Now we can find 

the true ratings which are closest together. We print out the two closest cities to the console.  

 

3 The second half of the function finds a third city which shares the closest ratings to the first two. We perform a similar procedure to what we 

went through for the two cities by first finding a Euclidean distance. Then we take out the main diagonal. Finally using the find function in 
MatLab we are able to find the city which shares similar ratings to the first two.  

IV. CONCLUSIONS 

What is the important take away from the results is how your results change depending on the weights of your data. 

We observed how the economic status has the most variance thus if we only use our un-transformed data the two 

cities that share the closest economic status will appear the most similar. These will closely related in terms of 

 function findThreeSimilar(labels, data, criteriaL) 

  

% Limit the scope of the data 

dataLimited = data(:,1:criteriaL); 

  

% Find the two closest cities 

for i = 1:size(dataLimited, 1) 

    for j = 1:size(dataLimited,1) 

        for k = 1:size(dataLimited, 2) 

            temp(k) = (dataLimited(i,k)-dataLimited(j,k))^2; 

        end 

        disData(i,j) = sqrt(sum(temp)); 

    end 

end 

clear temp 

  

% Remove the zeros along the main diagonal 

for i = 1:size(disData,1) 

    for j = 1:size(disData,2) 

        if(i == j) 

            disData(i,j) = inf; 

        end 

    end 

end 

  

% Find minimumn distance 

minDis = min(min(disData)); 

[minR, minC] = find(disData==minDis); 

fprintf(['The closest cities: ' labels(minR(1),:) ' & ' labels(minC(1),:) '\n']); 

 

 

 

% Begin finding the third closest city 

for i = 1:length(dataLimited(1,:)) 

    disData3(i) = (dataLimited(minR(1),i)+dataLimited(minC(1),i))/2; 

end 

  

for i = 1:size(dataLimited,1) 

    for j = 1:size(dataLimited, 2) 

        temp(j) = (dataLimited(i,j)-disData3(j))^2; 

    end 

    dis2C(i) = sqrt(sum(temp)); 

    if((i==minC(1)) || (i==minR(1)) ) 

       dis2C(i) = inf; 

    end 

end 

  

% Fianlly we can find the third closest state 

minc2z = find(dis2C==min(dis2C)); 

fprintf(['The third closest city: ' labels(minc2z,:) '\n\n']); 

  

end 

 



economic status but that may be it. If you want to find the two cities that share the most characteristics across all 

categorizes you need to transform the data. In our second trial we could say the cities of Hamilton-Middletown, OH  

& Grand Rapids, MI share more in common than Johnstown, PA & Elkhart-Goshen, IN do. Principal component 

analysis is useful in simplifying the process of comparing two cities. If we did not apply principal component 

analysis we would need to weight in the covariance matrix in our distance calculations.  


