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I PROBLEM STATEMENT

In this assignment we introduce Principal Component Analysis which will allow us to take a set of data and
transform it so appears uncorrelated. Using some data built into MatLab we can successfully apply principal
component analysis in a study that tracks 349 different cities’ climate, housing, health, crime, transportation,
education, arts, recreation, and economics statuses.

To begin applying principal component analysis we first must find our whitening transform matrix. The transform
matrix is constructed from the Eigen vectors and values of our data’s covariance matrix. The constructed is shown
below:

Whitening Transform = (/EigenValue)(EigvenVector™)
The transformed data will appear uncorrelated. A test we perform to see if this is true is to compute the covariance

matrix of our transformed data. If the data is truly uncorrelated the off-diagonal will be all zeros.

Lastly we will want to see which two cities are the most closely related. We will apply a Euclidean distance to
determine which ratings of two cities are the most closely related. We perform this step for our un-transformed

1. APPROACH AND RESULTS

First we will showcase a sample of the raw ratings matrix.

1 2 3 4 5 6 7 8 9
1 521 6200 237 923 4031 2757 996 1405 7633
2 575 8138 1656 886 4883 2438 5564 2632 4350
3 468 7339 618 970 2531 2560 237 859 5250
4 476 7908 1431 610 6883 3399 4655 1617 5864
5 659 8393 1853 1483 6558 3026 4496 2612 5727
6 520 5819 640 727 2444 2972 334 1018 5254
7 359 8288 621 514 2881 3144 2333 1117 5097
8 537 6487 965 706 4975 2945 1487 1280 5795
9 561 6191 432 399 4246 2778 256 1210 4230
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Figure 1: Sample of the Ratings Matrix (Note it is 349 Rows Long)

Now we can find the covariance of the ratings matrix which will lead us to finding the Eigen Vectors and values.
We display them below:



1 2 3 4 5 6 7 8 9

1 0.0421 -0.0814 -0.0012 0.0163 -0.0263 0.0067 -0.0155 0.0064
2 0.0229 0.0121 -0.0267 -0.0486 -0.0838 01778 0.0826 09372 0.2691
3 -0.0014 -0.2414 -0.1371 0.9295 -0.1591 -0.0266 -0.0278 0.0205 0.1783
4 0.0877 0.2668 -0.9448 -0.0540 0.1160 0.0990 -0.0376 0.0109 0.0281
5 -0.0094 -0.0415 0.0135 -0.0022 -0.1466 -0.0384 -0.9715 -0.0188 0.1493
6 0.0169 0.9292 0.2412 02532 -0.1063 0.0216 -0.0415 0.0014 0.0252
7| -5.9859-04 0.0159 0.0430 -0.1676 0.0087 0.0278 0.1510 0.2823 0.9309
8 0.0050 0.0188 0.1271 0.1733 0.9543 0.0690 -0.1496 -0.1038 0.0698
9 -0.0327 -0.0544 0.0702 0.0052 -0.1022 0.9745 -0.0127 -0.1734 0.0251

Figure 2: Eigen Vector Matrix for Ratings Data

1 2 3 4 5 6 7 8 9

1 0 0 0 0 0 0 0 0
2 0 6.6996e+04 0 0 0 0 0 0 0
3 0 0 9.2810e+04 0 0 0 0 0 0
4 0 0 0 24085e+05 0 0 0 0 0
5 0 0 0 0 47834e+05 0 0 0 0
§ 0 0 0 0 0 1.0764e+06 0 0 0
7 0 0 0 0 0 0 16380e+06 0 0
8 0 0 0 0 0 0 0 4.4080e+06 0
9 0 0 0 0 0 0 0 0 24414e+07

Figure 3: Eigen Value Matrix for Ratings Data

From the Eigen value matrix we see that the largest value occurs in the 9" column which tells us that the 9" column
has the most variance in it. You can see this is true if you reference Figure 1. Referencing the corresponding
categories matrix loaded in with the cities data we see how the 9™ column corresponds to the economic status of
each city. Since this Eigen value is the largest we know the Eigen vector corresponding to this Eigen value has the
most weight in the transform. The second largest Eigen Value occurs in the 8™ column which correspond to a city’s
recreation. If we remove the two rating criteria with the largest Eigen values we will observe how much weight they
have on the variance of the ratings data set (climate, housing, health). If we look at the Eigen values for these
columns we see how they
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Figure 4: Variance v Eigen Value Size

The above plot showcases how the largest Eigen values effect the variance of the data. We can now successfully
compute our transformation matrix. We call our new matrix Y1. If we compute the covariance matrix of Y1 we
observe an identity matrix (with rounding errors).

1 2 3 4 5 6 7 8 9
1] 10000 -3.9074e-15 6653215 B8.8547e-16 -1.6274e-15 98160e-16 8.9630e-16  1.0452e-15 -1.047%-15
2| -3.9074e-15 10000 3.2494-16 9.2287e-16 -3.847%-15 5.9573e-16 -6.4312e-17  1.0635e-15 -6.3635e-16
3| 6.6532e-15 3.24%4e-16 1.0000 1.0831e-17 -4.0415e-16 -4.1701e-16 -1.0669e-15 -1.2098e-16  3.0734e-16
4 B88547e-16 9.2287e-16  1.0831e-17 10000 2.0255e-15 -1.1373e-16 -14622e-16 -6.7663e-16  2.8162e-16
5 -1.6274e-15 -3.8479-15 -4.0415¢-16  2.0255e-15 10000 2.9245¢-16 1.6789¢-16 1.1102e-15  5.0908¢-16
§ 08160e-16 5.0573e-16 -4.1701e-16 -1.1373e-16  2.9245¢-16 10000 -1.3539e-16 -7.9611e-16 4.9283e-16
7| 89630e-16 -64312e-17 -1.0669%-15 -1.4622e-16 1.6789€-16 -1.353%-16 1 -21663e-17 1.353%-16
8 1.0452e-15 1.0635e-15 -1.2998e-16 -6.7663e-16 1.1102e-15 -7.9611e-16 -2.1663e-17 10000  5.6865¢-16
9 -1.0479-15 -6.3635¢-16 3.0734e-16 2.8162e-16 5.0008¢-16 4.9283¢-16 1.3539-16  5.6865¢-16 1.0000

Figure 5: Covariance of Transformed Ratings Matrix

Now that we have our original data and our transformed data we will find the two cities that share the closest
ratings. In our first case we use our raw untransformed data. In our second case we use our transformed data which
will allow us to find the two cities who are the most similar across all the different categorizes. Lastly, we will limit
our ratings data to be only the first three categorizes (climate, housing, and health).



Raw Data:

The closest cities: Johnstown, PA & Elkhart-Goshen, IN

The third closest city: Altoona, PA

Transformed Data:

The closest cities: Hamilton-Middletown, OH & Grand Rapids, M|
The third closest city: Lewiston-Auburn, ME

Transformed Data limited to first 3 criteria:

The closest cities: St. Joseph, MO & Champaign-Urbana-Rantoul, IL

The third closest city: Medford, OR

Figure 6: Closest cities Result

In our first scenario we see that the three closest cities are two from PA and on from IN. Since we found these
distance measures from the un-transformed data set we note that these three cities are most similar in regard to
economic status only. When we switch to using the transformed data set we see how we end up with different
results. The two closest cities if were to weight all categories equally are a city from OH and one from MI. Lastly if
we only concentrate on finding the three closest cities in terms of the first three categorizes our results change once
again.



M. MATLAB CoDE

%% Program script
clear; clc; close all
% Load Cities data set
load cities

% Compute Covariance Matrix
CovC = cov (ratings)

% Find Eigen Value/Vectors
[eigVec, eigVal] = eig(CovC)

% Tranformed Data (Whitening Transform)
V1l = (eigVal”-(1/2)) *eigVec';

% Display Covariance Matrix (Note: Its an identity)
Y = (Vl*ratings')';

Ycov = cov(Y)

% Plot percent of variance accounted for by the first n eigenvalues

n = l:size(ratings,?2);
sortEigvVal = sort(sort(eigval, 1, 'descend'), 2, 'descend');
for i = n

varPer (i) = (sortEigVal(l,i))/sum(sortEigVal(l,:), 2)*100;
end

figure();

plot(n, varPer);

xlabel ('Eigen Value Size (n)');

ylabel ('Percent of Variance');

title ('Percent Variance vs Eigen Value Size');
grid on;

[

% Find the two cities that are closet together

fprintf ('Raw Data:\n');

findThreeSimilar (names, ratings, size(ratings,2));

fprintf ('Transformed Data:\n');

findThreeSimilar (names, Y, size(Y,2));

fprintf ('Transformed Data limited to first 3 criteria:\n');
findThreeSimilar (names, Y, 3);

1 Main Program Script. We first load in our cities data set and compute its covariance. From the covariance matrix we are able to find a
whitening transform that will uncorrelated the data. To test the hypothesis we compute the covariance of our transformed data to the console. For
each Eigen value we compute the correspond variance it has on the data. After we find our transformed data we will now find the closet cities
using the ‘findThreeSimilar’ function.



function findThreeSimilar (labels, data, criterial)
% Limit the scope of the data
dataLimited = data(:,l:criterial);

% Find the two closest cities
for 1 = l:size(datalLimited, 1)
for j = l:size(datalimited, 1)
for k = l:size(datalLimited, 2)
temp (k) = (datalimited (i, k)-datalimited(j,k))"2;
end
disData(i,j) = sqgrt(sum(temp));
end
end
clear temp

% Remove the zeros along the main diagonal
for 1 = 1l:size(disData,1)
for j = l:size(disData,?2)
if (i == j)
disbData(i,j) = inf;
end
end
end

% Find minimumn distance

minDis = min (min (disData)) ;

[minR, minC] = find(disData==minDis) ;

fprintf (['The closest cities: ' labels(minR(1l),:) ' & ' labels(minC(l),:) '\n'l);

2 We write a ‘findThreeSimilar’ function to find the three cities that share the closet ratings. First we go through and limit the scope of our data if
necessary. Then we use a Euclidean distance measure to find the cities that have the closest ratings to one another. Since the minimum Euclidean
distance will always occur when comparing a rating to itself (along the main diagonal) we set these distances equal to infinity. Now we can find
the true ratings which are closest together. We print out the two closest cities to the console.

% Begin finding the third closest city
for i = 1l:length(datalLimited(1, :))

disData3 (i) = (datalLimited (minR(1l),i)+datalimited(minC(1),1))/2;
end

for i = l:size(datalLimited, 1)
for j = l:size(datalimited, 2)
temp (j) = (datalimited(i,]j)-disData3(j))"2;
end
dis2C (i) = sqgrt(sum(temp));
if((i==minC (1)) || (i==minR (1)) )
dis2C(i) = inf;
end
end

% Fianlly we can find the third closest state
minc2z = find(dis2C==min (dis2C)) ;
fprintf (['The third closest city: ' labels(minc2z,:) '\n\n'l]);

end

3 The second half of the function finds a third city which shares the closest ratings to the first two. We perform a similar procedure to what we
went through for the two cities by first finding a Euclidean distance. Then we take out the main diagonal. Finally using the find function in
MatLab we are able to find the city which shares similar ratings to the first two.

V. CONCLUSIONS
What is the important take away from the results is how your results change depending on the weights of your data.

We observed how the economic status has the most variance thus if we only use our un-transformed data the two
cities that share the closest economic status will appear the most similar. These will closely related in terms of



economic status but that may be it. If you want to find the two cities that share the most characteristics across all
categorizes you need to transform the data. In our second trial we could say the cities of Hamilton-Middletown, OH
& Grand Rapids, MI share more in common than Johnstown, PA & Elkhart-Goshen, IN do. Principal component
analysis is useful in simplifying the process of comparing two cities. If we did not apply principal component
analysis we would need to weight in the covariance matrix in our distance calculations.



