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I. Introduction 

In this lab we will be experiment with lead compensator design.  This is important because lead 
compensators add poles and zeros to the closed loop transfer function, which in turn alters the 
shape of the root locus.  If we can alter the shape of the root locus, we can ensure that the poles that 
give us our desired settling time and steady state error lie on the root locus, which leaves us to 
simply calculate the proportional gain that gives us the desired pole. 

II. Procedure 

To begin the design of a lead compensator we need to analyze our DC motor system. We build our 
traditional DC motor apparatus and measure the system response to a 0.5 unit step. Also as before 
we can estimate our first order transfer function for the data collected using the system identity 
toolbox built into MatLab. After we have our transfer function we can plot the root locus fairly 
easily also in Matlab using the ‘rlocus’ function.  The transient response of the will show lots of 
steady state error. We can find steady state error by: 

𝐾𝑃 = lim
𝑠→0

𝐺(𝑠) → 𝑒𝑠𝑠 =
𝑅

1 + 𝐾𝑃
 

Now that we have the steady state error we can try to reduce the error by introducing a lead 
compensator. We pick a new steady state error of 0.25 and find the lead compensator accordingly 
for when our zeros of our compensator are 0.01, 0.1, and 1. The compensator will change our 
transfer function so that our new transfer function becomes: 

𝐶𝐺(𝑠) = 𝐶𝐿𝑒𝑎𝑑(𝑠) ∗ 𝐺(𝑠) 

For each lead compensator case we plot the root locus and the corresponding transient response. 
We compare each compensator to determine which produces the best response.  

III. Results 

 Below we see the first order transfer function that describes the open loop uncompensated system. 

𝐺(𝑠) =
21.54

𝑠 + 23.4
 

First Order Transfer Function of Open Loop System 

For the above transfer function, we have the following root locus diagram. 



 

Figure 1: Root Locus and Step Response for First Order Open Loop Transfer Function 

It is now important to find kp for this system.  This constant is important because it dictates the 
steady state error.  The steady state error is given in the following equation  

𝑒𝑠𝑠 =
1

1 + 𝑘𝑝

 

From this equation, we can see that in order to minimize the steady state error, we have to make kp 

large.  As it stands, the kp for the open loop transfer function is 
21.54

23.4
.  This is found by taking the 

limit of the open loop transfer function as s approaches 0. 

Now using the equation for steady state error, and the value of kp shown above, we can calculate the 
steady state error of our system.  The calculation yields a steady state error of .26.  The simulation 
of the system is shown below, from which we can verify our steady state error calculation. 



 

Figure 2: Simulation Results 

As we can see from the figure above, the steady state error is 0.26.  For the purpose of this lab, the 
desired steady state error is no more than .05.  To reduce the steady state error, we will design a 
lead compensator.  To begin, we first must figure out what kp is required for the desired steady 
state error.  We can find a new kp by setting our steady state error equal to a desired value of 0.025 
and solving for kp. 

. 5

1 + 𝑘𝑝

= .025 → 𝑘𝑝 = 19 

We are also interested in the ratio of our new kp to the old kp.  This ratio is obtained as the following: 

𝑘𝑝𝑛

𝑘𝑝𝑜

=
19

21.54
23.4

= 20.64 = 𝑅 

We will now begin to calculate the pole and zero locations of our compensator.  If we choose the 
pole of the compensator to be .01, we can calculate the required zero location that would yield the 
desired kp.. The equation is as follows. 

𝑍𝑐 = 𝑅𝑃𝑐 = 20.64(0.01) = .21 

We have the following simulation and experimental results. 



 

Figure 3: Results for Zc=.01 

We see that the simulation results and the experimental results converge.  We also see that this 
does not get to the desired steady error, but the rise time is extremely long.  For this reason, we try 
a larger pole location. 

The following is the root locus and response with the new CG(S). 

 

Figure 4: Response for Zc = .1 

We can see as we are increasing the pole of the compensator, we are achieving a faster settling time 
while maintaining the same steady state error. 



 

Following the same process again for a pole location of 1 yields a compensator zero of 20.6, and the 
output is shown below. 

 

Figure 5: System Response for Zc of 1 

We can see that as we increase the pole, the settling time is decreased.  This makes sense as the 
settling time is defined as 4/ζωn which is the real part of the root. 

IV. Discussion  

We showed how the different compensators effect the transient response of our original system. 
This lab was again completely digital thus we question how we would construct a compensator 
using only analog components? As with the previous lab, we note that compensators can be 
constructed in similar fashion to PID controllers.  

 

Figure 6: Bias for the Active Circuit Realization 

 

 

 



 

 

 

The circuit calls for using an OP-Amp with 𝑍1 & 𝑍2 being a parallel capacitor resistor combination. 
The values we choose for our capacitor and resistance will determine the lead/lag compensator we 
construct. We saw in Lab 8 how effective analog circuits can be when constructing PID controllers, 
and compensators are no different. Analog realization of compensators are cheaper, more reliable, 
but harder to adjust.  

Compensators have thus been shown to adjust our transfer function so that it meets the design 
criteria we require. With a compensator we can adjust a system by introducing new poles and zeros 
so that it has a specified percent overshoot or settling time. By using root locus we can analyze how 
a compensator will alter the transient response of said system. Compensators are useful in real 
world applications in areas of system stabilization in areas such as satellites, or laser frequency 
stabilization. The compensator will aid PID controllers in adjusting any system to fit specification.  


