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I. PROBLEM STATEMENT 

The central limit theorem states that no matter the underlying distribution as long as you have a relatively uniform 

mean and variance the sum of the distributions will become normal. In our experiment we will develop our own 

function that creates a uniform distribution with a number of samples N composed of a number of random variables 

n. By observing the actual histogram of our function output we explore how as we increase the number of random 

variables our PDF becomes more normal. We plot the actual mean, variance, and MSE between the actual pdf and a 

normal fitted distribution to observe the underlying characteristics of our output. 

Activity four of the assignment tasks us with creating a new method for creating a normal distribution of random 

variables using the Box-Muller technique. To compare the two functions we develop we time and compare the speed 

and accuracy of our two approaches for creating normal distributions.  

II. APPROACH AND RESULTS 

 

Figure 1: Actual PDF and a Normal Distribution fit when n=1 

To begin we use our uniform generating function to create a single uniform distribution. The resulting plot is 

obviously uniform and does not fit a normal distribution too well. A single uniform distribution had the highest 

mean squared error out of all the plots (we will look at the MSE later in the assignment). Next we increase the 

number of random variables (n) to ten and observe whether we see whether we can see application of the central 

limit theorem. 



 

Figure 2: Actual PDF and a Normal Distribution fit when n=10 

At ten random variables we see a pretty normal distribution from the sum of the samples returned using our uniform 

generating function. We extrapolated from our MSE plot (Figure 1) a MSE of 0.01. Also note how the possible 

range of data has increased from [-1,1] to [-10, 10]. Next we will increase the number of random variables to one 

hundred and observe the actual vs normal fitted PDF. 

 

Figure 3: Actual PDF and a Normal Distribution fit when n=100 

At one hundred samples our sum of uniform distributions has become Gaussian. In our experiment we found that 

even after 10 random variables our distribution was already Gaussian. As we keep increasing n our distribution will 

become more Gaussian.  



We will now find the error of the mean, variance, and difference between the actual and normal pdf and plot the 

differences. Using the central limit theorem we can also find the expected mean and variance as we increase our 

number of random variables (n). The overall mean and variance will be as follows: 

𝑆𝑛̅̅ ̅ = 𝐸[𝑆𝑛] = 𝑛µ𝑥  
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First we find the expected values for mean and variance given a uniform distribution between -1 and 1. 
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Thus for example if we increase the number of random variables (n) to 100 our new mean and variance become: 

𝑆𝑛̅̅ ̅ = 𝐸[𝑆𝑛] = (100)(0) = 0 
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Using these concepts we can write code to find the error of our mean and variance as we increase our number of 

random variables (n). 

 

 



 

Figure 4: The actual mean as we increase the Number of Random 

Variables (n) 

 

Figure 5: The actual variance as we increase the Number of Random 

Variables (n) 

 

Figure 6: The mean error as we increase the Number of Random 

Variables (n) 

 

Figure 7: The variance error as we increase the Number of Random 

Variables (n) 

Also, we are interested in finding the difference between our actual PDF and a normal distribution estimated fit.  

 

Figure 8: MSE between the actual PDF and a Normal fitted distribution. 



We observe how the difference between our means and variance never goes above 1, so our percent difference will 

always be very small. The MSE also decreases as we increase the number of random variables as the more 

distributions we combine the more normal our PDF becomes. It is also interesting to note how at a random variable 

size of two reach a relative minimum and does become lower until our random variable size was twenty. I concluded 

this characteristics occurs due to my histogram binning process. In the code I increase my bin edges by n. Thus 

when n is equal to two the range for my histogram is [-2,2] and when n is 10 my histogram ranges from [-10,10]. At 

a random variable size of 2 we have a triangle histogram (convolve to uniform distributions) where the edges are 

relatively flat. The probability of having a value of -1 in our first uniform distribution and -1 again in our second 

uniform distribution is very low. Fitting a Gaussian will fit the edges of the actual histogram very well producing a 

smaller histogram. Also, with a smaller random variable size our amplitudes are concentrated around the expected 

value zero. As we increase our variable size our spread of values increases causing the normal distribution to not fit 

as well. The characteristic does not change until our variable size is greater than eight where our MSE begins to 

decrease again, thus show casing the properties of the central limit theorem.  

Next we look at another way to generate normally distribution random variables using the Box-Muller transform. 

From the Wikipedia page of Box-Muller Transforms we learn how we can generate two uniformly distributed 

variables and perform the following operation to create a normally distributed random variable. 

𝑍0 = √−2ln(𝑅𝑉1) cos(2𝜋(𝑅𝑉2)) ; 𝑤ℎ𝑒𝑟𝑒𝑅𝑉1/2 = 𝑅𝑎𝑛𝑑𝑜𝑚𝑙𝑦𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑟𝑑𝑈𝑛𝑖𝑓𝑟𝑜𝑚𝑙𝑦𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 

The Box-Muller technique was developed as a more efficient method to creating normal distributed random 

variables. In our experiment we will compare the computation time and fit our sum of uniform distribution to the 

Box-Muller method to see if the theory stands true. In our test scenario we focus on a random variable size (n) of ten 

with ten thousand samples (N) in each random variable.  

 

Figure 9: Normal Distributed Array using Sum of Uniform Method  

http://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform


 

Figure 10: Normal Distributed Array using Sum of Box-Muller Method  

Above we plot the actual vs a normal distribution fit for both our sum of uniform and box Muller techniques. The 

general characteristics of both PDFs showcase pretty normal distributed random variables. The real challenge is 

comparing the computation time it took to generate those random variable arrays to the accuracy to an actual normal 

distribution.  

Table 1: Sum of Uniform vs Box-Muller Comparison 

Method Elapsed Time (Milliseconds) MSE (Actual vs Estimated) 

Sum of Uniform 3.823 0.0551 

Box-Muller 0.648 0.0548 

 

From Table 1 we observe the better performance and accuracy of the Box-Muller method. The sum of uniform 

distribution does work however it is slow due to the multiple iterations of random numbers that need to be generated 

and summed in order to achieve a final result. The Box-Muller technique requires no looping across multiple values 

and thus produces a results 3.2ms faster.  

III. MATLAB CODE 

In this assignment we separated our coding process into functions. Each function is outlined below and accompanied 

by a script that utilizes each function.  

 



 

1 The ‘myunifDist’ function generates a uniformly distributed set of random variables that contains N samples with a range of values from [min, 

max]. The number of uniformly distributed random variables that is summed up is defined by the input parameter n. The code is simple utilizing a 
single for loop that generates a uniform random sample array n times. The output of the function is the sum of all n random variables generated.  

 

2 ‘myMSE’ is a function the find the mean squared error between two arrays x and y. To begin we need to make sure both sample arrays are the 

same length. If they are not it is necessary to down sample the longer array to the size of the smaller array. Using a combination of if statements 

we determine the longer array and down sample accordingly. Then we loop through each element in the input array x and y and find the MSE 
between the two. The output of the function is the normalized MSE.  

function sumx = myunifDist(n, N, min, max) 

  

numSam = n; 

vecL = N; 

  

% Lower and Upper bound of random Number Generation 

lRange = min; 

uRange = max; 

  

for i=1:numSam 

    x(i,:) = lRange +(uRange-lRange)*rand(vecL,1); 

end 

  

% Output the Sum of all randomly generated variables. 

sumx = sum(x,1); 

  

end 

 

function MSE = myMSE(x, y) 

       

    % Find lengths of the two arrays 

    xL = length(x); 

    yL = length(y); 

     

    % Find the longer array and down sample according to the smaller array 

    if xL > yL 

        lMin = yL; 

        numSam = xL/yL; 

        if mod(numSam, 1) ~= 0 

            numSam = floor(numSam); 

        end   

        Array1 = downsample(x, numSam); 

        Array2 = y; 

    else 

        lMin = xL;  

        numSam = yL/xL; 

        if mod(numSam, 0) ~= 0 

            numSam = floor(numSam); 

        end            

        Array1 = downsample(y, numSam); 

        Array2 = x; 

    end 

     

    % Find MSE  

    for k = 1:lMin 

        g(k) = (Array1(k)-Array2(k))^2; 

    end 

  

    MSE = sum(g)/lMin; 

  

end 

 



 

3 The last function created for the computer assignment is the Box-Muller distribution generator. Using the function outline on the Wikipedia 

page, we first need three input parameters mean (mu), standard deviation (sigma), and number of samples (N). We generator two random 
numbers using MatLab’s built in random number generator. Using the two random numbers we generated we can create a set of normal 

distribution using the equation specified. The output is then configured to have properties of the mean and standard deviation specified.  

 

4 We start our script by defining our constants. The assignment asks for n = 100 and N=10,000 with a range between -1 and 1. I specified a bin 

size of 0.1 given our minimum value range is from -1 to 1.  

 

5 The main for loop of the script starts by counting from 1 to the maximum n asked for (n=100). It is important to adjust our expected mean and 

variance to the number of random variables we have. Also, we redefine our histogram bounds depending on size n to keep in accordance to the 
properties set forth by the central limit theorem. Lastly, we call our function to provide us with a sum of randomly generator uniformly 

distributed variables according to our loop counter.  

 

6 We find the actual mean and variance and compare the values to our expected mean and variance.   

function out = myNormDist(mu, sigma, N) 

     

    % Find two uniform Variables 

    x1 = rand(1,N); 

    x2 = rand(1,N); 

  

    y1 = sqrt(-2.*log(x1)).*cos(2.*pi.*x2); 

    %y2 = sqrt(-2.*log(x1)).*sin(2.*pi.*x2); 

  

    out = (y1*sigma + mu); 

end 

 

 

%% Part 1, 2, 3 

clear; clc; close all; 

  

% Number random Variables 

nRandomVar = 100; 

NSamples = 10000; 

binSize = 0.1; 

  

% Lower and Upper bound of random Number Generation 

lRange = -1; 

uRange = 1; 

 

% For loop 

for n=1:nRandomVar 

    % Progress Bar 

    n 

         

    % Excepted Mean/Variance 

    eMean = (uRange+lRange)/2*n; 

    eVar = (uRange-lRange)^2/12*n; 

  

    % Histogram Bounds 

    bounds = [n*lRange:binSize:n*uRange]; 

    numBins = length(bounds); 

     

    % Generate Random Array 

    samArray = myunifDist(n, NSamples, lRange, uRange); 

 

% Find mean and Variance 

    samMean(n) = mean(samArray); 

    samVar(n) = var(samArray); 

    meanErr(n) = (samMean(n) - eMean); 

    varErr(n) = (samVar(n) - eVar); 

 



 

7 In this section of the script we find the actual and normal fitted distributions of our sample array we generated. The importance step here is to 
remember to sort the sample array we generated and pass the sorted array to ‘fitdist’ so we create a distribution object that correctly formatted. 

All these functions have been used in previous computer assignments.   

 

8 Calling our mean squared error function allows us to find the MSE between our normal fitted and actual pdfs.    

 

9 We end our for-loop by looking for three special cases which we wish to pick out from the rest of the bunch.  The assignment calls for plotting 

the actual PDF and normal fitted distribution for when n=1, 10, and 100. When our for-loop reaches the desired case we branch into the if 

statement block and executed plotting the histogram and normal distribution fit to a new figure.  

% Estimate the pdf 

    h_samArray = histcounts(samArray, bounds, 'Normalization', 'pdf'); 

  

    % Use a function to fit the data to a Normal distribution 

    % Sort Array 

    samArray_sort = sort(samArray)'; 

     

    % Fit to Normal Distribution 

    pd = fitdist(samArray_sort, 'Normal'); 

  

    % Find values of the PDF for our data 

    samArrayNormal = pdf(pd, samArray_sort); 

 

MSE_samArray(n) = myMSE(h_samArray, samArrayNormal); 

 

    % Special Cases we want to observe 

    if n==1 || n==10 || n==100 

        figure('name','[ECE 3522] Class Assignment [8]'); 

         

        % Plot the Histogram and Normal on same plot 

        histogram(samArray, bounds, 'Normalization', 'pdf'); 

         

        hold on 

        

        % Plot the Normal Distribution 

        plot(samArray_sort, samArrayNormal, 'r'); 

         

        % Define axis 

        title(sprintf('Actual Distribution and Normal Distribution when n = %0.1f',n)); 

        xlabel(sprintf('x (Bin size of %0.2f)',binSize)); 

        ylabel('Frequency'); 

         

        hold off 

    end 

end 

 



 

10 Now that we have finished looping through all possible variables sizes n, we plot the results for what our actual mean and variance are. We 

also plot the error between the expected mean and variance are in comparison to the actual mean and variance. Lastly, we plot the MSE for all 
variable sizes we computed.  

The next section of code outlines the script used to complete part four of the assignment.  

 

11 As in the previous part we define our input parameters and adjust mean, variance, and histogram bounds accordingly.   

%Plot all the things 

figure('name','[ECE 3522] Class Assignment [8]'); 

semilogx(samMean); 

ylim([-1 1]); 

grid on 

xlabel('Number of Random Variables (n)') 

ylabel('Mean of sample'); 

title('Mean vs Sample Size (N)') 

  

figure('name','[ECE 3522] Class Assignment [8]'); 

semilogx(samVar); 

grid on 

xlabel('Number of Random Variables (n)') 

ylabel('Variance of sample'); 

title('Variance vs Sample Size (N)') 

  

figure('name','[ECE 3522] Class Assignment [8]'); 

semilogx(meanErr); 

grid on 

xlabel('Number of Random Variables (n)') 

ylabel('Mean Error of sample'); 

title('Error of Mean vs Sample Size (N)') 

  

figure('name','[ECE 3522] Class Assignment [8]'); 

semilogx(varErr); 

grid on 

xlabel('Number of Random Variables (n)') 

ylabel('Variance Error of sample'); 

title('Error of Variance vs Sample Size (N)') 

  

figure('name','[ECE 3522] Class Assignment [8]'); 

semilogx(MSE_samArray); 

grid on 

xlabel('Number of Random Variables (n)') 

ylabel('MSE of PDF'); 

title('MSE Actual PDF vs Normal Distribution') 

 

%% Part 4 

clear; clc; close all 

  

% Number random Variables 

nRandomVar = 10; 

NSamples = 10000; 

binSize = 0.1; 

  

% Lower and Upper bound of random Number Generation 

lRange = 0; 

uRange = 1; 

  

% Excpected Mean/Variance for Uniform Distribution 

eMean = (uRange+lRange)/2*nRandomVar; 

eVar = (uRange-lRange)^2/12*nRandomVar; 

eStd = sqrt(eVar); 

  

% Histogram Bounds 

bounds = [nRandomVar*lRange:binSize:nRandomVar*uRange]; 

numBins = length(bounds); 

 

 



 

12 Next we will time the performance of our ‘myunifDist’ function. The process is what we used in the previous parts to develop a normal 
distribution of random variables.  

 

13 As in the previous parts we plot the actual pdf and overlay a normal distrubiton. Using our mean squared error function we find the MSE 

between our actual and normal fitted PDFs.  

% Create RN using two techniques 

  

%--------Sum of Uniform Technique-------- 

  

fprintf('Sum uniform Generation\n'); 

% Time the generation 

tic 

% Generate Random Array 

samArrayUGen = myunifDist(nRandomVar, NSamples, lRange, uRange); 

toc 

 

% Plot 

figure('name','[ECE 3522] Class Assignment [8]'); 

% Estimate the pdf 

h_samArrayUGen = histcounts(samArrayUGen, bounds, 'Normalization', 'pdf'); 

histogram(samArrayUGen, bounds, 'Normalization', 'pdf'); 

hold on 

  

% Use a function to fit the data to a Normal distribution 

% Sort Array 

samArrayUGen_sort = sort(samArrayUGen)'; 

  

% Fit to Normal Distribution 

pd = fitdist(samArrayUGen_sort, 'Normal'); 

  

% Find values of the PDF for our data 

samArrayUGenNormal = pdf(pd, samArrayUGen_sort); 

  

% Plot the Normal Distribution 

plot(samArrayUGen_sort, samArrayUGenNormal, 'r'); 

title(sprintf('Actual Distribution and Normal Distribution using Uniform Generation when n 

= %0.1f',nRandomVar)); 

xlabel(sprintf('x (Bin size of %0.2f)',binSize)); 

ylabel('Frequency'); 

hold off 

  

MSE_samArrayUGen = myMSE(h_samArrayUGen, samArrayUGenNormal) 

 



 

14 We repeat the steps taken for the uniform distribution method for the Muller method. Again we time using the tic/toc functions built into 

MatLab. 

IV. CONCLUSIONS 

In our trials we have shown how we can create a normal distribution of random variables using application of the 

central limit theorem. The turning point generally accepted as the turning point for creating a normal distribution out 

of other distributed random variables is a n>=30. In our experiment at only a variable size of 10 we observe quite 

normally distributed variables. This application of the central limit theorem can be used to understand why white 

noise is apparent in most signals. In a open environment, you have a combination of sound sources combining 

together. If you start a recording the microphone will pick up the surrounding sounds and thus create an underlying 

Gaussian white noise in your recording. Albeit the noise will have less amplitude than you voice which you intended 

to record, but the noise is still there.  

In the latter point of the assignment we compared and contrasted the central limit theorem uniform RV creation of a 

normal distribution to the Box-Muller technique. In a fraction of the time we were able to create our distribution of 

normal variables. In the future we can utilize this technique for our analysis purposes if we wanted to create a very 

large array of samples.  

  

%---------Muller Generation-------- 

  

fprintf('Muller Transform Generation \n'); 

tic 

% Find random Numbers using Muller Transform 

samArrayMGen = myNormDist(eMean, eStd, NSamples); 

toc 

  

% Plot 

figure('name','[ECE 3522] Class Assignment [8]'); 

% Estimate the pdf 

h_samArrayMGen = histcounts(samArrayMGen, bounds, 'Normalization', 'pdf'); 

histogram(samArrayMGen, bounds, 'Normalization', 'pdf'); 

hold on 

  

% Use a function to fit the data to a Normal distribution 

% Sort Array 

samArrayMGen_sort = sort(samArrayMGen)'; 

  

% Fit to Normal Distribution 

pd = fitdist(samArrayMGen_sort, 'Normal'); 

  

% Find values of the PDF for our data 

samArrayMGenNormal = pdf(pd, samArrayMGen_sort); 

  

% Plot the Normal Distribution 

plot(samArrayMGen_sort, samArrayMGenNormal, 'r'); 

title(sprintf('Actual Distribution and Normal Distribution using Muller Generation when n = 

%0.1f', nRandomVar)); 

xlabel(sprintf('x (Bin size of %0.2f)',binSize)); 

ylabel('Frequency'); 

hold off 

  

MSE_samArrayMGen = myMSE(h_samArrayMGen, samArrayMGenNormal) 
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