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I. PROBLEM STATEMENT 

Class assignment four has us exploring the distribution fits laid out in chapter four and seeing how they fit real 

world data sets. We again use our speech signal and google stock as a basis for our analyses. From chapter four we 

are introduced to a number of  

Bernoulli Binomial Geometric 

Exponential Normal (Gaussian) Uniform 

These different distribution models help us model random variables in things like our speech signal or google stock. 

What we hope to accomplish in this write up is to see how we can use these distribution models to predict an 

expected outcome.  

II. APPROACH AND RESULTS 

To begin the assignment we take our speech signal and find its histogram. Once we have a histogram (or pdf) of our 

speech signal, a good first approach to try a normal distribution. We lay our distribution on top of our histogram to 

see the fit. 

 

Figure 1: A histogram plot of the speech signal also showing a normal distribution fit. 

Due to the possible ranges of our audio signal [-32768:32768] there are many samples whose values become outliers 

when compared to the mean/variance. Therefore, one may think the correlation between to be low. Yet, our 

assumption of trying a normal distribution first pays off. With the way our audio signal is constructed we see how 



most of our signal is centered around zero. A normal distribution is also centered around the mean making the 

correlation between the two high. In our analysis we compared the histogram to normal distribution fit to find a 

mean squared error between the two. 

 

Although our audio signal may have samples whose values are outliers we see a low mean squared error. If our 

distribution matched our histogram perfectly our mean square error would be zero. If the two were uncorrelated our 

mean squared error would approach infinity. Again since our distribution fits nicely our correlation resulted in a 

value of 0.0021. Therefore we can use our distribution model to represent pretty accurately the characteristics of our 

audio signal.  

Our distribution does have problems fitting to the peaks in frequency that occur in our audio signal around zero. As 

is seen in Figure 2 our distribution does not predict frequencies 5.5E-4 but instead a maximum frequency of ~2E-4. 

It does accurately predict our frequencies of our outliers for values less than -6000 and greater than 6000. Our 

samples in these ranges rarely occur. These characteristics are what cause our mean square error to be relatively low.  

 

Figure 2: A histogram plot of the speech signal also showing a normal distribution fit (Zoomed in to sample value 

ranging: [-6000:6000]) 



 

Figure 3: A histogram plot of the speech signal also showing a normal distribution fit (Zoomed in to sample values 

ranging: [0:-6000]) 

 

Figure 4: A histogram plot of the google stock also showing three distributions fits.  

Our second data set does not fit nicely into a normal distribution. From our earlier computations we know the mean 

for the close google stock is 286 with a variance of 16194. For comparison our speech signal had a mean of -0.389 



with a variance of 4139362. Using these values we see how the google stock will have a more clustered together 

histogram which does not fit into the normal distribution well. Performing the same mean square error calculation 

between our google stock histogram and a normal distribution fit gives: 

 

Comparing the mean squared error for the google close data to our audio signal mean squared error we see a rather 

sharp increase. Using other distribution model we can better model our data. At first a truncated normal distribution 

seemed logical. In fact it fits pretty well given you take your data to range from 100 to 450. However this distributed 

model only works for this range of data. How can we fit a distribution to the entire set? 

After some research we found a kernel distribution. The kernel distribution is a weighted sum of normal 

distributions. We already know a truncated normal fits the data rather well if we restrict its range. Fitting the kernel 

to the histogram we see a better fit. 

 

Our mean squared error drops by 18 points, a better correlation!  



III. MATLAB CODE 

 

1 To begin we load in our signal (the same method used in previous assignments). Once we have a data organized 

into variables inside MATLAB we find the mean and variance of the Google Stock price and speech signal using 

MATLAB’s built in functions. 

%% 

clear; clc; close all; 

  

% Let's first open the raw speech data file and store its values in a 

% vector fn 

% 

fp=fopen('rec_01_speech.raw', 'r'); 

% Test Sine Wave 

    %fp=fopen('rec_01_sine.raw', 'r'); 

fn=fread(fp,inf,'int16'); 

fclose(fp); 

  

L_speech = length(fn); 

% We are given a sample frequency of 8 kHz 

% 

fs = 8000; 

L_speech = length(fn); 

timeL = L_speech/fs; 

  

% We can find the legnth of our signal given our sample frequency 

% 

t= linspace(0, timeL,L_speech); 

  

% Let's open the xls data file and store its values in avector fn 

%  

google_v00 = xlsread('google_v00.xlsx'); 

% google_open = google_v00(:,1); 

% google_high = google_v00(:,2); 

% google_low = google_v00(:,3); 

google_close = google_v00(:,4); 

L_googleClose = length(google_close); 

  

clear google_v00 

  

% Let us find the min/max val, mean, median, and variance 

%  

google_min = min(google_close); 

google_max = max(google_close); 

google_mean = mean(google_close); 

google_median = median(google_close); 

google_var = var(google_close); 

  

fn_min = min(fn); 

fn_max = max(fn); 

fn_mean = mean(fn); 

fn_median = median(fn); 

fn_var = var(fn); 

  

% Print our findings 

%  

  

out = sprintf('Google data: min = %f, max = %f, mean = %f, median = %f, variance = %f 

\n'... 

    , google_min, google 

out = sprintf('Speech data: min = %f, max = %f, mean = %f, median = %f, variance = %f 

\n'... 

    , fn_min, fn_max, fn_mean, fn_median, fn_var); 

disp(out); 

 



 

2 Using the histogram function we find our histogram (PDF). We used the function previously in other class 

assignments. The bounds we set are the entire range for a 32 bit integer (32768). We also hold on the plot so we can 

plot the distribution functions later on top of the histogram.  

 

3 After we find our histogram we need to up-sample the values to be the same size as our speech signal. Our 

histogram is smaller than our speech signal now since we group our histogram values into bin sizes of 1. To up-

sample we loop through every value possible in our speech signal (D) and compare it to values in our speech signal 

(fn(k)). If D matches a value in our signal we store the frequency produced by the histogram function in a new array 

hfnUpSam.  

 

4 Next we find the distribution function. We first specify we want a Normal distribution. The pdf function fits our 

data to the normal distribution. After we have pdf we just need to plot the distribution. The pdf will be of same 

length as our original signal.  

bin_size = 1; 

  

% ------------------ Speech ------------------ 

  

% Compute Histogram and plot histogram 

% 

bounds = [-32768 round(fn_min/5)*5:bin_size:round(fn_max/5)*5 32768]; 

figure('name','[ECE 3522] Class Assignment [2]'); 

h_fn = histogram(fn, bounds, 'Normalization', 'probability'); 

title('Histogram of Speech'); 

xlabel(sprintf('x (Bin size of %d)',bin_size)); 

ylabel('Frequency'); 

hold on 

 

% Sort the Speech Data 

fn_sort = sort(fn); 

  

% Upsample the histogram frequencies 

index = 1; 

hfnUpSam = zeros(L_speech, 1); 

hist_fnValue = h_fn.Values; 

  

for D = floor(fn_min):bin_size:floor(fn_max)-1 

    for k = 1:L_speech 

        if ((D <= fn(k)) && (fn(k) < D+1)) 

            hfnUpSam(k) = hist_fnValue(index); 

        end 

    end 

    index = index + 1; 

end  

 

% Use a function to fit the data to a Normal distribution 

pd = fitdist(fn_sort, 'Normal'); 

  

% Find values of the PDF for our data 

yfnNormal = pdf(pd,fn_sort); 

  

% Plot the Normal Distribution 

plot(fn_sort, yfnNormal, 'b'); 

  

% Label the axis 

legend('Histogram', 'Normal Dist'); 

  

 



 

5 After we have our pdf and up-sampled we can find the mean squared error using the following form: 

𝑀𝑆𝐸 =∑(𝑃𝐷𝐹 − 𝐻𝐼𝑆𝑇𝑂𝐺𝑅𝐴𝑀)2 

 

6 We repeat the steps taken with the signal with audio signal but now using our google closing stock data. 

% Find MSE for the Normal on Speech Signal 

for k = 1:L_speech 

    xt(k) = (yfnNormal(k)-hfnUpSam(k))^2; 

end 

  

MSE_fnNormal = sum(xt) 

  

hold off 

 

% ------------------ Google ------------------ 

clear xt pd 

  

% Compute Histogram and plot histogram 

% 

bounds = [round(google_min/5)*5:bin_size:round(google_max/5)*5]; 

figure('name','[ECE 3522] Class Assignment [2]'); 

h_google = histogram(google_close, bounds, 'Normalization', 'probability'); 

title('Histogram of Google Stock'); 

xlabel(sprintf('x (Bin size of %d)',bin_size)); 

ylabel('Frequency'); 

hold on 

  

% Upsample the histogram frequencies 

index = 1; 

hGoogleUpSam = zeros(L_googleClose, 1); 

hist_googleValue = h_google.Values; 

  

for D = floor(google_min):bin_size:floor(google_max)-1 

    for k = 1:L_googleClose 

        if (D <= google_close(k) && google_close(k) < D+1) 

            hGoogleUpSam(k) = hist_googleValue(index); 

        end 

    end 

    index = index + 1; 

end  

  

% Google Normal Distribution Computation 

% 

  

% Sort the Google Data 

google_close_sort = sort(google_close); 

  

% Use a function to fit the data to a Normal distribution 

pd = fitdist(google_close_sort, 'Normal'); 

  

% Find values of the PDF for our data 

yGoogleNormal = pdf(pd,google_close_sort); 

  

% Plot the Normal Distribution 

plot(google_close_sort, yGoogleNormal, 'b'); 

  

% Find MSE for the Normal on GoogleClose 

for k = 1:L_googleClose 

    xt(k) = (yGoogleNormal(k)-hGoogleUpSam(k))^2; 

end 

  

MSE_googleNormal = sum(xt) 

  

 



 

7 For the google stock we noted that a normal distribution did not fit the data too well. To fit a Kernel distribution to 

the data we need to pass the pdf function a new handle. Using the fitdist function we tell it to fit a kernel distribution 

to our data. After we can find plot and find the MSE as we did using the process as our normal distribution.  

 

8 For the truncated normal we use the same function. However, instead of passing the pdf function the entire signal 

we pass it a filtered version of our google stock. Using a ‘for loop’ we loop through a sorted version of our google 

stock data. If the stock data is between 100 we store that index of the sorted google stock into a variable. The same 

is down for the upper bound index. We re-compute the variance and mean so that we can make our normal 

distribution.   

IV. CONCLUSIONS 

The conclusion for this lab is that we can model sets of random variable data using known distribution function. 

Finding a distribution that fits can be tricky but a normal distribution can give you a good starting point. Knowing 

you have a good distribution can then be used to model random variable data to a degree.  

An actual application is when finding the rate of defection for products coming off an assembly line. You can feed 

your data into a distribution model and predict the rate of failing products. Companies will find this useful when 

allocating a budget for servicing these defective products.  

clear xt pd 

  

% Use a function to fit the data to a Kernel distribution 

pd = fitdist(google_close, 'Kernel'); 

  

% Find values of the PDF for our data 

yGoogleKernel = pdf(pd,google_close_sort); 

  

% Plot the Kernel Distribution 

plot(google_close_sort, yGoogleKernel, 'r'); 

  

% Find MSE for the Kernel on GoogleClose 

for k = 1:L_googleClose 

    xt(k) = (yGoogleKernel(k)-hGoogleUpSam(k))^2; 

end 

  

MSE_googleKernel = sum(xt) 

 

% Find the truncated Normal Distribution 

for i = 1:length(google_close_sort) 

    if (google_close_sort(i)) <= 100 

        indexMin = i; 

    end 

    if (google_close_sort(i)) >= 450 

        indexMax = i; 

        break 

    end 

end 

  

% Find the new variance and Means for the truncated GoogleClose 

google_trun_var =  var(google_close_sort(indexMin:indexMax)); 

google_trun_mean = mean(google_close_sort(indexMin:indexMax)); 

  

% Use a function to fit the data to a Normal distribution 

pd = makedist('Normal', 'mu',google_trun_mean,'sigma',sqrt(google_trun_var)); 

  

yGoogleTrunNormal = pdf(pd,google_close_sort(indexMin:indexMax)); 

plot(google_close_sort(indexMin:indexMax), yGoogleTrunNormal, 'm'); 

legend('Histogram', 'Normal Dist', 'Kernel Dist', 'Trun Normal Dist'); 
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